image_interprebility/test_image_interpretability.py
2023-06-05 15:11:03 +08:00

28 lines
1.4 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from task.image_interpretability import ImageInterpretability
# # TODO: 使用gradcam算法针对resnet模型利用本地图片both.png进行可解释性分析参数为默认参数
# files_path = ImageInterpretability().perform(image_path='sample/both.png',method='gradcam', model_name='resnet',output_path='D:\桌面\image_interprebility\image_interprebility\image_interprebility/test')
# print(files_path)
#
kwargs={
"aug_smooth":True,
"eigen_smooth":True
}
model_info ={"model_name":'resnet50',
"source": "torchvision"
}
# TODO: 使用fullgrad算法针对resnet模型利用本地图片both.png进行可解释性分析,参数为默认参数
files_path = ImageInterpretability().perform(image_path='sample/img_2.png',method='fullgrad',model_info=model_info,output_path="D:/test_image/",**kwargs)
print(files_path)
# kwargs={
# "target_layer":'',
# "aug_smooth":True,
# "eigen_smooth":True
# }
# # TODO: 使用fullgrad算法针对resnet模型利用本地图片both.png进行可解释性分析,采用数据增强技术来改善cam质量并使用提取主成分的方式减少噪声,通过改变target_layer得到不同层的结果
# files_path = ImageInterpretability().perform(image_path='sample/ILSVRC2012_val_00000002.JPEG',method='gradcam', model_name='resnet',**kwargs)
# print(files_path)