import argparse import cv2 import numpy as np import torch from torchvision import models from pytorch_grad_cam import GradCAM, \ HiResCAM, \ ScoreCAM, \ GradCAMPlusPlus, \ AblationCAM, \ XGradCAM, \ EigenCAM, \ EigenGradCAM, \ LayerCAM, \ FullGrad, \ GradCAMElementWise from pytorch_grad_cam import GuidedBackpropReLUModel from pytorch_grad_cam.utils.image import show_cam_on_image, \ deprocess_image, \ preprocess_image from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--use-cuda', action='store_true', default=False, help='Use NVIDIA GPU acceleration') parser.add_argument( '--image-path', type=str, default='./examples/both.png', help='Input image path') parser.add_argument('--aug_smooth', action='store_true', help='Apply test time augmentation to smooth the CAM') parser.add_argument( '--eigen_smooth', action='store_true', help='Reduce noise by taking the first principle componenet' 'of cam_weights*activations') parser.add_argument('--method', type=str, default='gradcam', choices=['gradcam', 'hirescam', 'gradcam++', 'scorecam', 'xgradcam', 'ablationcam', 'eigencam', 'eigengradcam', 'layercam', 'fullgrad'], help='Can be gradcam/gradcam++/scorecam/xgradcam' '/ablationcam/eigencam/eigengradcam/layercam') args = parser.parse_args() args.use_cuda = args.use_cuda and torch.cuda.is_available() if args.use_cuda: print('Using GPU for acceleration') else: print('Using CPU for computation') return args def api(image_path,method,model_name,**kwargs): args = get_args() methods = \ {"gradcam": GradCAM, "hirescam": HiResCAM, "scorecam": ScoreCAM, "gradcam++": GradCAMPlusPlus, "ablationcam": AblationCAM, "xgradcam": XGradCAM, "eigencam": EigenCAM, "eigengradcam": EigenGradCAM, "layercam": LayerCAM, "fullgrad": FullGrad, "gradcamelementwise": GradCAMElementWise} model = models.resnet50(pretrained=True) # model = eval('models.'+model_name+'(pretrained=True)') print(model) # Choose the target layer you want to compute the visualization for. # Usually this will be the last convolutional layer in the model. # Some common choices can be: # Resnet18 and 50: model.layer4 # VGG, densenet161: model.features[-1] # mnasnet1_0: model.layers[-1] # You can print the model to help chose the layer # You can pass a list with several target layers, # in that case the CAMs will be computed per layer and then aggregated. # You can also try selecting all layers of a certain type, with e.g: # from pytorch_grad_cam.utils.find_layers import find_layer_types_recursive # find_layer_types_recursive(model, [torch.nn.ReLU]) #target_layers = [model.layer4] target_layer=kwargs['target_layer'] target_layers = [eval(f'model.{target_layer}')] rgb_img = cv2.imread(image_path, 1)[:, :, ::-1] rgb_img = np.float32(rgb_img) / 255 input_tensor = preprocess_image(rgb_img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # We have to specify the target we want to generate # the Class Activation Maps for. # If targets is None, the highest scoring category (for every member in the batch) will be used. # You can target specific categories by # targets = [e.g ClassifierOutputTarget(281)] targets = None # Using the with statement ensures the context is freed, and you can # recreate different CAM objects in a loop. cam_algorithm = methods[method] with cam_algorithm(model=model, target_layers=target_layers, use_cuda=args.use_cuda) as cam: # AblationCAM and ScoreCAM have batched implementations. # You can override the internal batch size for faster computation. cam.batch_size = 32 print(args.eigen_smooth) aug_smooth=kwargs['aug_smooth'] grayscale_cam = cam(input_tensor=input_tensor, targets=targets, aug_smooth=aug_smooth, eigen_smooth=args.eigen_smooth) # Here grayscale_cam has only one image in the batch grayscale_cam = grayscale_cam[0, :] cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True) # cam_image is RGB encoded whereas "cv2.imwrite" requires BGR encoding. cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR) gb_model = GuidedBackpropReLUModel(model=model, use_cuda=args.use_cuda) gb = gb_model(input_tensor, target_category=None) cam_mask = cv2.merge([grayscale_cam, grayscale_cam, grayscale_cam]) cam_gb = deprocess_image(cam_mask * gb) gb = deprocess_image(gb) cv2.imwrite(f'{method}_cam.jpg', cam_image) cv2.imwrite(f'{method}_gb.jpg', gb) cv2.imwrite(f'{method}_cam_gb.jpg', cam_gb) return method+'_gb.jpg' kwargs={"target_layer":'layer1', "aug_smooth":True, "eigen_smooth":True} path=api('sample/both.png','fullgrad','resnet',**kwargs) print(path)