from task.image_interpretability import ImageInterpretability # # TODO: 使用gradcam算法,针对resnet模型,利用本地图片both.png进行可解释性分析,参数为默认参数 # files_path = ImageInterpretability().perform(image_path='sample/both.png',method='gradcam', model_name='resnet',output_path='D:\桌面\image_interprebility\image_interprebility\image_interprebility/test') # print(files_path) # kwargs={ "aug_smooth":True, "eigen_smooth":True } model_info ={"model_name":'resnet50', "source": "torchvision" } # TODO: 使用fullgrad算法,针对resnet模型,利用本地图片both.png进行可解释性分析,参数为默认参数 files_path = ImageInterpretability().perform(image_path='sample/img_2.png',method='fullgrad',model_info=model_info,output_path="D:/test_image/",**kwargs) print(files_path) # kwargs={ # "target_layer":'', # "aug_smooth":True, # "eigen_smooth":True # } # # TODO: 使用fullgrad算法,针对resnet模型,利用本地图片both.png进行可解释性分析,采用数据增强技术来改善cam质量,并使用提取主成分的方式减少噪声,通过改变target_layer得到不同层的结果 # files_path = ImageInterpretability().perform(image_path='sample/ILSVRC2012_val_00000002.JPEG',method='gradcam', model_name='resnet',**kwargs) # print(files_path)