image_interprebility/pytorch_grad_cam/utils/image.py

184 lines
6.9 KiB
Python
Raw Normal View History

2023-06-05 15:11:03 +08:00
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.lines import Line2D
import cv2
import numpy as np
import torch
from torchvision.transforms import Compose, Normalize, ToTensor
from typing import List, Dict
import math
def preprocess_image(
img: np.ndarray, mean=[
0.5, 0.5, 0.5], std=[
0.5, 0.5, 0.5]) -> torch.Tensor:
preprocessing = Compose([
ToTensor(),
Normalize(mean=mean, std=std)
])
return preprocessing(img.copy()).unsqueeze(0)
def deprocess_image(img):
""" see https://github.com/jacobgil/keras-grad-cam/blob/master/grad-cam.py#L65 """
img = img - np.mean(img)
img = img / (np.std(img) + 1e-5)
img = img * 0.1
img = img + 0.5
img = np.clip(img, 0, 1)
return np.uint8(img * 255)
def show_cam_on_image(img: np.ndarray,
mask: np.ndarray,
use_rgb: bool = False,
colormap: int = cv2.COLORMAP_JET,
image_weight: float = 0.5) -> np.ndarray:
""" This function overlays the cam mask on the image as an heatmap.
By default the heatmap is in BGR format.
:param img: The base image in RGB or BGR format.
:param mask: The cam mask.
:param use_rgb: Whether to use an RGB or BGR heatmap, this should be set to True if 'img' is in RGB format.
:param colormap: The OpenCV colormap to be used.
:param image_weight: The final result is image_weight * img + (1-image_weight) * mask.
:returns: The default image with the cam overlay.
"""
heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
if use_rgb:
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
heatmap = np.float32(heatmap) / 255
if np.max(img) > 1:
raise Exception(
"The input image should np.float32 in the range [0, 1]")
if image_weight < 0 or image_weight > 1:
raise Exception(
f"image_weight should be in the range [0, 1].\
Got: {image_weight}")
cam = (1 - image_weight) * heatmap + image_weight * img
cam = cam / np.max(cam)
return np.uint8(255 * cam)
def create_labels_legend(concept_scores: np.ndarray,
labels: Dict[int, str],
top_k=2):
concept_categories = np.argsort(concept_scores, axis=1)[:, ::-1][:, :top_k]
concept_labels_topk = []
for concept_index in range(concept_categories.shape[0]):
categories = concept_categories[concept_index, :]
concept_labels = []
for category in categories:
score = concept_scores[concept_index, category]
label = f"{','.join(labels[category].split(',')[:3])}:{score:.2f}"
concept_labels.append(label)
concept_labels_topk.append("\n".join(concept_labels))
return concept_labels_topk
def show_factorization_on_image(img: np.ndarray,
explanations: np.ndarray,
colors: List[np.ndarray] = None,
image_weight: float = 0.5,
concept_labels: List = None) -> np.ndarray:
""" Color code the different component heatmaps on top of the image.
Every component color code will be magnified according to the heatmap itensity
(by modifying the V channel in the HSV color space),
and optionally create a lagend that shows the labels.
Since different factorization component heatmaps can overlap in principle,
we need a strategy to decide how to deal with the overlaps.
This keeps the component that has a higher value in it's heatmap.
:param img: The base image RGB format.
:param explanations: A tensor of shape num_componetns x height x width, with the component visualizations.
:param colors: List of R, G, B colors to be used for the components.
If None, will use the gist_rainbow cmap as a default.
:param image_weight: The final result is image_weight * img + (1-image_weight) * visualization.
:concept_labels: A list of strings for every component. If this is paseed, a legend that shows
the labels and their colors will be added to the image.
:returns: The visualized image.
"""
n_components = explanations.shape[0]
if colors is None:
# taken from https://github.com/edocollins/DFF/blob/master/utils.py
_cmap = plt.cm.get_cmap('gist_rainbow')
colors = [
np.array(
_cmap(i)) for i in np.arange(
0,
1,
1.0 /
n_components)]
concept_per_pixel = explanations.argmax(axis=0)
masks = []
for i in range(n_components):
mask = np.zeros(shape=(img.shape[0], img.shape[1], 3))
mask[:, :, :] = colors[i][:3]
explanation = explanations[i]
explanation[concept_per_pixel != i] = 0
mask = np.uint8(mask * 255)
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2HSV)
mask[:, :, 2] = np.uint8(255 * explanation)
mask = cv2.cvtColor(mask, cv2.COLOR_HSV2RGB)
mask = np.float32(mask) / 255
masks.append(mask)
mask = np.sum(np.float32(masks), axis=0)
result = img * image_weight + mask * (1 - image_weight)
result = np.uint8(result * 255)
if concept_labels is not None:
px = 1 / plt.rcParams['figure.dpi'] # pixel in inches
fig = plt.figure(figsize=(result.shape[1] * px, result.shape[0] * px))
plt.rcParams['legend.fontsize'] = int(
14 * result.shape[0] / 256 / max(1, n_components / 6))
lw = 5 * result.shape[0] / 256
lines = [Line2D([0], [0], color=colors[i], lw=lw)
for i in range(n_components)]
plt.legend(lines,
concept_labels,
mode="expand",
fancybox=True,
shadow=True)
plt.tight_layout(pad=0, w_pad=0, h_pad=0)
plt.axis('off')
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
plt.close(fig=fig)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
data = cv2.resize(data, (result.shape[1], result.shape[0]))
result = np.hstack((result, data))
return result
def scale_cam_image(cam, target_size=None):
result = []
for img in cam:
img = img - np.min(img)
img = img / (1e-7 + np.max(img))
if target_size is not None:
img = cv2.resize(img, target_size)
result.append(img)
result = np.float32(result)
return result
def scale_accross_batch_and_channels(tensor, target_size):
batch_size, channel_size = tensor.shape[:2]
reshaped_tensor = tensor.reshape(
batch_size * channel_size, *tensor.shape[2:])
result = scale_cam_image(reshaped_tensor, target_size)
result = result.reshape(
batch_size,
channel_size,
target_size[1],
target_size[0])
return result