182 lines
7.5 KiB
Python
182 lines
7.5 KiB
Python
|
# A Consistent and Efficient Evaluation Strategy for Attribution Methods
|
||
|
# https://arxiv.org/abs/2202.00449
|
||
|
# Taken from https://raw.githubusercontent.com/tleemann/road_evaluation/main/imputations.py
|
||
|
# MIT License
|
||
|
|
||
|
# Copyright (c) 2022 Tobias Leemann
|
||
|
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
# of this software and associated documentation files (the "Software"), to deal
|
||
|
# in the Software without restriction, including without limitation the rights
|
||
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
# copies of the Software, and to permit persons to whom the Software is
|
||
|
# furnished to do so, subject to the following conditions:
|
||
|
|
||
|
# The above copyright notice and this permission notice shall be included in all
|
||
|
# copies or substantial portions of the Software.
|
||
|
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
# SOFTWARE.
|
||
|
|
||
|
|
||
|
# Implementations of our imputation models.
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from scipy.sparse import lil_matrix, csc_matrix
|
||
|
from scipy.sparse.linalg import spsolve
|
||
|
from typing import List, Callable
|
||
|
from pytorch_grad_cam.metrics.perturbation_confidence import PerturbationConfidenceMetric, \
|
||
|
AveragerAcrossThresholds, \
|
||
|
RemoveMostRelevantFirst, \
|
||
|
RemoveLeastRelevantFirst
|
||
|
|
||
|
# The weights of the surrounding pixels
|
||
|
neighbors_weights = [((1, 1), 1 / 12),
|
||
|
((0, 1), 1 / 6),
|
||
|
((-1, 1), 1 / 12),
|
||
|
((1, -1), 1 / 12),
|
||
|
((0, -1), 1 / 6),
|
||
|
((-1, -1), 1 / 12),
|
||
|
((1, 0), 1 / 6),
|
||
|
((-1, 0), 1 / 6)]
|
||
|
|
||
|
|
||
|
class NoisyLinearImputer:
|
||
|
def __init__(self,
|
||
|
noise: float = 0.01,
|
||
|
weighting: List[float] = neighbors_weights):
|
||
|
"""
|
||
|
Noisy linear imputation.
|
||
|
noise: magnitude of noise to add (absolute, set to 0 for no noise)
|
||
|
weighting: Weights of the neighboring pixels in the computation.
|
||
|
List of tuples of (offset, weight)
|
||
|
"""
|
||
|
self.noise = noise
|
||
|
self.weighting = neighbors_weights
|
||
|
|
||
|
@staticmethod
|
||
|
def add_offset_to_indices(indices, offset, mask_shape):
|
||
|
""" Add the corresponding offset to the indices.
|
||
|
Return new indices plus a valid bit-vector. """
|
||
|
cord1 = indices % mask_shape[1]
|
||
|
cord0 = indices // mask_shape[1]
|
||
|
cord0 += offset[0]
|
||
|
cord1 += offset[1]
|
||
|
valid = ((cord0 < 0) | (cord1 < 0) |
|
||
|
(cord0 >= mask_shape[0]) |
|
||
|
(cord1 >= mask_shape[1]))
|
||
|
return ~valid, indices + offset[0] * mask_shape[1] + offset[1]
|
||
|
|
||
|
@staticmethod
|
||
|
def setup_sparse_system(mask, img, neighbors_weights):
|
||
|
""" Vectorized version to set up the equation system.
|
||
|
mask: (H, W)-tensor of missing pixels.
|
||
|
Image: (H, W, C)-tensor of all values.
|
||
|
Return (N,N)-System matrix, (N,C)-Right hand side for each of the C channels.
|
||
|
"""
|
||
|
maskflt = mask.flatten()
|
||
|
imgflat = img.reshape((img.shape[0], -1))
|
||
|
# Indices that are imputed in the flattened mask:
|
||
|
indices = np.argwhere(maskflt == 0).flatten()
|
||
|
coords_to_vidx = np.zeros(len(maskflt), dtype=int)
|
||
|
coords_to_vidx[indices] = np.arange(len(indices))
|
||
|
numEquations = len(indices)
|
||
|
# System matrix:
|
||
|
A = lil_matrix((numEquations, numEquations))
|
||
|
b = np.zeros((numEquations, img.shape[0]))
|
||
|
# Sum of weights assigned:
|
||
|
sum_neighbors = np.ones(numEquations)
|
||
|
for n in neighbors_weights:
|
||
|
offset, weight = n[0], n[1]
|
||
|
# Take out outliers
|
||
|
valid, new_coords = NoisyLinearImputer.add_offset_to_indices(
|
||
|
indices, offset, mask.shape)
|
||
|
valid_coords = new_coords[valid]
|
||
|
valid_ids = np.argwhere(valid == 1).flatten()
|
||
|
# Add values to the right hand-side
|
||
|
has_values_coords = valid_coords[maskflt[valid_coords] > 0.5]
|
||
|
has_values_ids = valid_ids[maskflt[valid_coords] > 0.5]
|
||
|
b[has_values_ids, :] -= weight * imgflat[:, has_values_coords].T
|
||
|
# Add weights to the system (left hand side)
|
||
|
# Find coordinates in the system.
|
||
|
has_no_values = valid_coords[maskflt[valid_coords] < 0.5]
|
||
|
variable_ids = coords_to_vidx[has_no_values]
|
||
|
has_no_values_ids = valid_ids[maskflt[valid_coords] < 0.5]
|
||
|
A[has_no_values_ids, variable_ids] = weight
|
||
|
# Reduce weight for invalid
|
||
|
sum_neighbors[np.argwhere(valid == 0).flatten()] = \
|
||
|
sum_neighbors[np.argwhere(valid == 0).flatten()] - weight
|
||
|
|
||
|
A[np.arange(numEquations), np.arange(numEquations)] = -sum_neighbors
|
||
|
return A, b
|
||
|
|
||
|
def __call__(self, img: torch.Tensor, mask: torch.Tensor):
|
||
|
""" Our linear inputation scheme. """
|
||
|
"""
|
||
|
This is the function to do the linear infilling
|
||
|
img: original image (C,H,W)-tensor;
|
||
|
mask: mask; (H,W)-tensor
|
||
|
|
||
|
"""
|
||
|
imgflt = img.reshape(img.shape[0], -1)
|
||
|
maskflt = mask.reshape(-1)
|
||
|
# Indices that need to be imputed.
|
||
|
indices_linear = np.argwhere(maskflt == 0).flatten()
|
||
|
# Set up sparse equation system, solve system.
|
||
|
A, b = NoisyLinearImputer.setup_sparse_system(
|
||
|
mask.numpy(), img.numpy(), neighbors_weights)
|
||
|
res = torch.tensor(spsolve(csc_matrix(A), b), dtype=torch.float)
|
||
|
|
||
|
# Fill the values with the solution of the system.
|
||
|
img_infill = imgflt.clone()
|
||
|
img_infill[:, indices_linear] = res.t() + self.noise * \
|
||
|
torch.randn_like(res.t())
|
||
|
|
||
|
return img_infill.reshape_as(img)
|
||
|
|
||
|
|
||
|
class ROADMostRelevantFirst(PerturbationConfidenceMetric):
|
||
|
def __init__(self, percentile=80):
|
||
|
super(ROADMostRelevantFirst, self).__init__(
|
||
|
RemoveMostRelevantFirst(percentile, NoisyLinearImputer()))
|
||
|
|
||
|
|
||
|
class ROADLeastRelevantFirst(PerturbationConfidenceMetric):
|
||
|
def __init__(self, percentile=20):
|
||
|
super(ROADLeastRelevantFirst, self).__init__(
|
||
|
RemoveLeastRelevantFirst(percentile, NoisyLinearImputer()))
|
||
|
|
||
|
|
||
|
class ROADMostRelevantFirstAverage(AveragerAcrossThresholds):
|
||
|
def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]):
|
||
|
super(ROADMostRelevantFirstAverage, self).__init__(
|
||
|
ROADMostRelevantFirst, percentiles)
|
||
|
|
||
|
|
||
|
class ROADLeastRelevantFirstAverage(AveragerAcrossThresholds):
|
||
|
def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]):
|
||
|
super(ROADLeastRelevantFirstAverage, self).__init__(
|
||
|
ROADLeastRelevantFirst, percentiles)
|
||
|
|
||
|
|
||
|
class ROADCombined:
|
||
|
def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]):
|
||
|
self.percentiles = percentiles
|
||
|
self.morf_averager = ROADMostRelevantFirstAverage(percentiles)
|
||
|
self.lerf_averager = ROADLeastRelevantFirstAverage(percentiles)
|
||
|
|
||
|
def __call__(self,
|
||
|
input_tensor: torch.Tensor,
|
||
|
cams: np.ndarray,
|
||
|
targets: List[Callable],
|
||
|
model: torch.nn.Module):
|
||
|
|
||
|
scores_lerf = self.lerf_averager(input_tensor, cams, targets, model)
|
||
|
scores_morf = self.morf_averager(input_tensor, cams, targets, model)
|
||
|
return (scores_lerf - scores_morf) / 2
|