101 lines
3.2 KiB
Python
101 lines
3.2 KiB
Python
|
import numpy as np
|
||
|
import torch
|
||
|
from torch.autograd import Function
|
||
|
from pytorch_grad_cam.utils.find_layers import replace_all_layer_type_recursive
|
||
|
|
||
|
|
||
|
class GuidedBackpropReLU(Function):
|
||
|
@staticmethod
|
||
|
def forward(self, input_img):
|
||
|
positive_mask = (input_img > 0).type_as(input_img)
|
||
|
output = torch.addcmul(
|
||
|
torch.zeros(
|
||
|
input_img.size()).type_as(input_img),
|
||
|
input_img,
|
||
|
positive_mask)
|
||
|
self.save_for_backward(input_img, output)
|
||
|
return output
|
||
|
|
||
|
@staticmethod
|
||
|
def backward(self, grad_output):
|
||
|
input_img, output = self.saved_tensors
|
||
|
grad_input = None
|
||
|
|
||
|
positive_mask_1 = (input_img > 0).type_as(grad_output)
|
||
|
positive_mask_2 = (grad_output > 0).type_as(grad_output)
|
||
|
grad_input = torch.addcmul(
|
||
|
torch.zeros(
|
||
|
input_img.size()).type_as(input_img),
|
||
|
torch.addcmul(
|
||
|
torch.zeros(
|
||
|
input_img.size()).type_as(input_img),
|
||
|
grad_output,
|
||
|
positive_mask_1),
|
||
|
positive_mask_2)
|
||
|
return grad_input
|
||
|
|
||
|
|
||
|
class GuidedBackpropReLUasModule(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super(GuidedBackpropReLUasModule, self).__init__()
|
||
|
|
||
|
def forward(self, input_img):
|
||
|
return GuidedBackpropReLU.apply(input_img)
|
||
|
|
||
|
|
||
|
class GuidedBackpropReLUModel:
|
||
|
def __init__(self, model, use_cuda):
|
||
|
self.model = model
|
||
|
self.model.eval()
|
||
|
self.cuda = use_cuda
|
||
|
if self.cuda:
|
||
|
self.model = self.model.cuda()
|
||
|
|
||
|
def forward(self, input_img):
|
||
|
return self.model(input_img)
|
||
|
|
||
|
def recursive_replace_relu_with_guidedrelu(self, module_top):
|
||
|
|
||
|
for idx, module in module_top._modules.items():
|
||
|
self.recursive_replace_relu_with_guidedrelu(module)
|
||
|
if module.__class__.__name__ == 'ReLU':
|
||
|
module_top._modules[idx] = GuidedBackpropReLU.apply
|
||
|
print("b")
|
||
|
|
||
|
def recursive_replace_guidedrelu_with_relu(self, module_top):
|
||
|
try:
|
||
|
for idx, module in module_top._modules.items():
|
||
|
self.recursive_replace_guidedrelu_with_relu(module)
|
||
|
if module == GuidedBackpropReLU.apply:
|
||
|
module_top._modules[idx] = torch.nn.ReLU()
|
||
|
except BaseException:
|
||
|
pass
|
||
|
|
||
|
def __call__(self, input_img, target_category=None):
|
||
|
replace_all_layer_type_recursive(self.model,
|
||
|
torch.nn.ReLU,
|
||
|
GuidedBackpropReLUasModule())
|
||
|
|
||
|
if self.cuda:
|
||
|
input_img = input_img.cuda()
|
||
|
|
||
|
input_img = input_img.requires_grad_(True)
|
||
|
|
||
|
output = self.forward(input_img)
|
||
|
|
||
|
if target_category is None:
|
||
|
target_category = np.argmax(output.cpu().data.numpy())
|
||
|
|
||
|
loss = output[0, target_category]
|
||
|
loss.backward(retain_graph=True)
|
||
|
|
||
|
output = input_img.grad.cpu().data.numpy()
|
||
|
output = output[0, :, :, :]
|
||
|
output = output.transpose((1, 2, 0))
|
||
|
|
||
|
replace_all_layer_type_recursive(self.model,
|
||
|
GuidedBackpropReLUasModule,
|
||
|
torch.nn.ReLU())
|
||
|
|
||
|
return output
|