image_interprebility/pytorch_grad_cam/guided_backprop.py

101 lines
3.2 KiB
Python
Raw Normal View History

2023-06-05 15:11:03 +08:00
import numpy as np
import torch
from torch.autograd import Function
from pytorch_grad_cam.utils.find_layers import replace_all_layer_type_recursive
class GuidedBackpropReLU(Function):
@staticmethod
def forward(self, input_img):
positive_mask = (input_img > 0).type_as(input_img)
output = torch.addcmul(
torch.zeros(
input_img.size()).type_as(input_img),
input_img,
positive_mask)
self.save_for_backward(input_img, output)
return output
@staticmethod
def backward(self, grad_output):
input_img, output = self.saved_tensors
grad_input = None
positive_mask_1 = (input_img > 0).type_as(grad_output)
positive_mask_2 = (grad_output > 0).type_as(grad_output)
grad_input = torch.addcmul(
torch.zeros(
input_img.size()).type_as(input_img),
torch.addcmul(
torch.zeros(
input_img.size()).type_as(input_img),
grad_output,
positive_mask_1),
positive_mask_2)
return grad_input
class GuidedBackpropReLUasModule(torch.nn.Module):
def __init__(self):
super(GuidedBackpropReLUasModule, self).__init__()
def forward(self, input_img):
return GuidedBackpropReLU.apply(input_img)
class GuidedBackpropReLUModel:
def __init__(self, model, use_cuda):
self.model = model
self.model.eval()
self.cuda = use_cuda
if self.cuda:
self.model = self.model.cuda()
def forward(self, input_img):
return self.model(input_img)
def recursive_replace_relu_with_guidedrelu(self, module_top):
for idx, module in module_top._modules.items():
self.recursive_replace_relu_with_guidedrelu(module)
if module.__class__.__name__ == 'ReLU':
module_top._modules[idx] = GuidedBackpropReLU.apply
print("b")
def recursive_replace_guidedrelu_with_relu(self, module_top):
try:
for idx, module in module_top._modules.items():
self.recursive_replace_guidedrelu_with_relu(module)
if module == GuidedBackpropReLU.apply:
module_top._modules[idx] = torch.nn.ReLU()
except BaseException:
pass
def __call__(self, input_img, target_category=None):
replace_all_layer_type_recursive(self.model,
torch.nn.ReLU,
GuidedBackpropReLUasModule())
if self.cuda:
input_img = input_img.cuda()
input_img = input_img.requires_grad_(True)
output = self.forward(input_img)
if target_category is None:
target_category = np.argmax(output.cpu().data.numpy())
loss = output[0, target_category]
loss.backward(retain_graph=True)
output = input_img.grad.cpu().data.numpy()
output = output[0, :, :, :]
output = output.transpose((1, 2, 0))
replace_all_layer_type_recursive(self.model,
GuidedBackpropReLUasModule,
torch.nn.ReLU())
return output