104 lines
3.0 KiB
Python
104 lines
3.0 KiB
Python
|
import numpy as np
|
||
|
import torch
|
||
|
import torchvision
|
||
|
|
||
|
|
||
|
class ClassifierOutputTarget:
|
||
|
def __init__(self, category):
|
||
|
self.category = category
|
||
|
|
||
|
def __call__(self, model_output):
|
||
|
if len(model_output.shape) == 1:
|
||
|
return model_output[self.category]
|
||
|
return model_output[:, self.category]
|
||
|
|
||
|
|
||
|
class ClassifierOutputSoftmaxTarget:
|
||
|
def __init__(self, category):
|
||
|
self.category = category
|
||
|
|
||
|
def __call__(self, model_output):
|
||
|
if len(model_output.shape) == 1:
|
||
|
return torch.softmax(model_output, dim=-1)[self.category]
|
||
|
return torch.softmax(model_output, dim=-1)[:, self.category]
|
||
|
|
||
|
|
||
|
class BinaryClassifierOutputTarget:
|
||
|
def __init__(self, category):
|
||
|
self.category = category
|
||
|
|
||
|
def __call__(self, model_output):
|
||
|
if self.category == 1:
|
||
|
sign = 1
|
||
|
else:
|
||
|
sign = -1
|
||
|
return model_output * sign
|
||
|
|
||
|
|
||
|
class SoftmaxOutputTarget:
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def __call__(self, model_output):
|
||
|
return torch.softmax(model_output, dim=-1)
|
||
|
|
||
|
|
||
|
class RawScoresOutputTarget:
|
||
|
def __init__(self):
|
||
|
pass
|
||
|
|
||
|
def __call__(self, model_output):
|
||
|
return model_output
|
||
|
|
||
|
|
||
|
class SemanticSegmentationTarget:
|
||
|
""" Gets a binary spatial mask and a category,
|
||
|
And return the sum of the category scores,
|
||
|
of the pixels in the mask. """
|
||
|
|
||
|
def __init__(self, category, mask):
|
||
|
self.category = category
|
||
|
self.mask = torch.from_numpy(mask)
|
||
|
if torch.cuda.is_available():
|
||
|
self.mask = self.mask.cuda()
|
||
|
|
||
|
def __call__(self, model_output):
|
||
|
return (model_output[self.category, :, :] * self.mask).sum()
|
||
|
|
||
|
|
||
|
class FasterRCNNBoxScoreTarget:
|
||
|
""" For every original detected bounding box specified in "bounding boxes",
|
||
|
assign a score on how the current bounding boxes match it,
|
||
|
1. In IOU
|
||
|
2. In the classification score.
|
||
|
If there is not a large enough overlap, or the category changed,
|
||
|
assign a score of 0.
|
||
|
|
||
|
The total score is the sum of all the box scores.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, labels, bounding_boxes, iou_threshold=0.5):
|
||
|
self.labels = labels
|
||
|
self.bounding_boxes = bounding_boxes
|
||
|
self.iou_threshold = iou_threshold
|
||
|
|
||
|
def __call__(self, model_outputs):
|
||
|
output = torch.Tensor([0])
|
||
|
if torch.cuda.is_available():
|
||
|
output = output.cuda()
|
||
|
|
||
|
if len(model_outputs["boxes"]) == 0:
|
||
|
return output
|
||
|
|
||
|
for box, label in zip(self.bounding_boxes, self.labels):
|
||
|
box = torch.Tensor(box[None, :])
|
||
|
if torch.cuda.is_available():
|
||
|
box = box.cuda()
|
||
|
|
||
|
ious = torchvision.ops.box_iou(box, model_outputs["boxes"])
|
||
|
index = ious.argmax()
|
||
|
if ious[0, index] > self.iou_threshold and model_outputs["labels"][index] == label:
|
||
|
score = ious[0, index] + model_outputs["scores"][index]
|
||
|
output = output + score
|
||
|
return output
|