37 lines
1022 B
Python
37 lines
1022 B
Python
|
import numpy as np
|
||
|
from pytorch_grad_cam.base_cam import BaseCAM
|
||
|
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
|
||
|
|
||
|
# https://ieeexplore.ieee.org/document/9462463
|
||
|
|
||
|
|
||
|
class LayerCAM(BaseCAM):
|
||
|
def __init__(
|
||
|
self,
|
||
|
model,
|
||
|
target_layers,
|
||
|
use_cuda=False,
|
||
|
reshape_transform=None):
|
||
|
super(
|
||
|
LayerCAM,
|
||
|
self).__init__(
|
||
|
model,
|
||
|
target_layers,
|
||
|
use_cuda,
|
||
|
reshape_transform)
|
||
|
|
||
|
def get_cam_image(self,
|
||
|
input_tensor,
|
||
|
target_layer,
|
||
|
target_category,
|
||
|
activations,
|
||
|
grads,
|
||
|
eigen_smooth):
|
||
|
spatial_weighted_activations = np.maximum(grads, 0) * activations
|
||
|
|
||
|
if eigen_smooth:
|
||
|
cam = get_2d_projection(spatial_weighted_activations)
|
||
|
else:
|
||
|
cam = spatial_weighted_activations.sum(axis=1)
|
||
|
return cam
|