31 lines
935 B
Python
31 lines
935 B
Python
|
import numpy as np
|
||
|
from pytorch_grad_cam.base_cam import BaseCAM
|
||
|
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
|
||
|
|
||
|
|
||
|
class GradCAMElementWise(BaseCAM):
|
||
|
def __init__(self, model, target_layers, use_cuda=False,
|
||
|
reshape_transform=None):
|
||
|
super(
|
||
|
GradCAMElementWise,
|
||
|
self).__init__(
|
||
|
model,
|
||
|
target_layers,
|
||
|
use_cuda,
|
||
|
reshape_transform)
|
||
|
|
||
|
def get_cam_image(self,
|
||
|
input_tensor,
|
||
|
target_layer,
|
||
|
target_category,
|
||
|
activations,
|
||
|
grads,
|
||
|
eigen_smooth):
|
||
|
elementwise_activations = np.maximum(grads * activations, 0)
|
||
|
|
||
|
if eigen_smooth:
|
||
|
cam = get_2d_projection(elementwise_activations)
|
||
|
else:
|
||
|
cam = elementwise_activations.sum(axis=1)
|
||
|
return cam
|