image_interprebility/pytorch_grad_cam/base_cam.py

204 lines
8.1 KiB
Python
Raw Permalink Normal View History

2023-06-05 15:11:03 +08:00
import numpy as np
import torch
import ttach as tta
from typing import Callable, List, Tuple
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
from pytorch_grad_cam.utils.image import scale_cam_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
class BaseCAM:
def __init__(self,
model: torch.nn.Module,
target_layers: List[torch.nn.Module],
use_cuda: bool = False,
reshape_transform: Callable = None,
compute_input_gradient: bool = False,
uses_gradients: bool = True) -> None:
self.model = model.eval()
self.target_layers = target_layers
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
self.reshape_transform = reshape_transform
self.compute_input_gradient = compute_input_gradient
self.uses_gradients = uses_gradients
self.activations_and_grads = ActivationsAndGradients(
self.model, target_layers, reshape_transform)
""" Get a vector of weights for every channel in the target layer.
Methods that return weights channels,
will typically need to only implement this function. """
def get_cam_weights(self,
input_tensor: torch.Tensor,
target_layers: List[torch.nn.Module],
targets: List[torch.nn.Module],
activations: torch.Tensor,
grads: torch.Tensor) -> np.ndarray:
raise Exception("Not Implemented")
def get_cam_image(self,
input_tensor: torch.Tensor,
target_layer: torch.nn.Module,
targets: List[torch.nn.Module],
activations: torch.Tensor,
grads: torch.Tensor,
eigen_smooth: bool = False) -> np.ndarray:
weights = self.get_cam_weights(input_tensor,
target_layer,
targets,
activations,
grads)
weighted_activations = weights[:, :, None, None] * activations
if eigen_smooth:
cam = get_2d_projection(weighted_activations)
else:
cam = weighted_activations.sum(axis=1)
return cam
def forward(self,
input_tensor: torch.Tensor,
targets: List[torch.nn.Module],
eigen_smooth: bool = False) -> np.ndarray:
if self.cuda:
input_tensor = input_tensor.cuda()
if self.compute_input_gradient:
input_tensor = torch.autograd.Variable(input_tensor,
requires_grad=True)
outputs = self.activations_and_grads(input_tensor)
if targets is None:
target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1)
targets = [ClassifierOutputTarget(
category) for category in target_categories]
if self.uses_gradients:
self.model.zero_grad()
loss = sum([target(output)
for target, output in zip(targets, outputs)])
loss.backward(retain_graph=True)
# In most of the saliency attribution papers, the saliency is
# computed with a single target layer.
# Commonly it is the last convolutional layer.
# Here we support passing a list with multiple target layers.
# It will compute the saliency image for every image,
# and then aggregate them (with a default mean aggregation).
# This gives you more flexibility in case you just want to
# use all conv layers for example, all Batchnorm layers,
# or something else.
cam_per_layer = self.compute_cam_per_layer(input_tensor,
targets,
eigen_smooth)
return self.aggregate_multi_layers(cam_per_layer)
def get_target_width_height(self,
input_tensor: torch.Tensor) -> Tuple[int, int]:
width, height = input_tensor.size(-1), input_tensor.size(-2)
return width, height
def compute_cam_per_layer(
self,
input_tensor: torch.Tensor,
targets: List[torch.nn.Module],
eigen_smooth: bool) -> np.ndarray:
activations_list = [a.cpu().data.numpy()
for a in self.activations_and_grads.activations]
grads_list = [g.cpu().data.numpy()
for g in self.activations_and_grads.gradients]
target_size = self.get_target_width_height(input_tensor)
cam_per_target_layer = []
# Loop over the saliency image from every layer
for i in range(len(self.target_layers)):
target_layer = self.target_layers[i]
layer_activations = None
layer_grads = None
if i < len(activations_list):
layer_activations = activations_list[i]
if i < len(grads_list):
layer_grads = grads_list[i]
cam = self.get_cam_image(input_tensor,
target_layer,
targets,
layer_activations,
layer_grads,
eigen_smooth)
cam = np.maximum(cam, 0)
scaled = scale_cam_image(cam, target_size)
cam_per_target_layer.append(scaled[:, None, :])
return cam_per_target_layer
def aggregate_multi_layers(
self,
cam_per_target_layer: np.ndarray) -> np.ndarray:
cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
cam_per_target_layer = np.maximum(cam_per_target_layer, 0)
result = np.mean(cam_per_target_layer, axis=1)
return scale_cam_image(result)
def forward_augmentation_smoothing(self,
input_tensor: torch.Tensor,
targets: List[torch.nn.Module],
eigen_smooth: bool = False) -> np.ndarray:
transforms = tta.Compose(
[
tta.HorizontalFlip(),
tta.Multiply(factors=[0.9, 1, 1.1]),
]
)
cams = []
for transform in transforms:
augmented_tensor = transform.augment_image(input_tensor)
cam = self.forward(augmented_tensor,
targets,
eigen_smooth)
# The ttach library expects a tensor of size BxCxHxW
cam = cam[:, None, :, :]
cam = torch.from_numpy(cam)
cam = transform.deaugment_mask(cam)
# Back to numpy float32, HxW
cam = cam.numpy()
cam = cam[:, 0, :, :]
cams.append(cam)
cam = np.mean(np.float32(cams), axis=0)
return cam
def __call__(self,
input_tensor: torch.Tensor,
targets: List[torch.nn.Module] = None,
aug_smooth: bool = False,
eigen_smooth: bool = False) -> np.ndarray:
# Smooth the CAM result with test time augmentation
if aug_smooth is True:
return self.forward_augmentation_smoothing(
input_tensor, targets, eigen_smooth)
return self.forward(input_tensor,
targets, eigen_smooth)
def __del__(self):
self.activations_and_grads.release()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_tb):
self.activations_and_grads.release()
if isinstance(exc_value, IndexError):
# Handle IndexError here...
print(
f"An exception occurred in CAM with block: {exc_type}. Message: {exc_value}")
return True