"""main entry for training""" import argparse from torch.utils.data import DataLoader from model.bert import BERT from trainer import BERTTrainer from dataset import BERTDataset, BertTokenizer def train(): parser = argparse.ArgumentParser() parser.add_argument("-c", "--train_dataset", type=str, default="./dataset/corpus/train.txt", help="train dataset for train bert") parser.add_argument("-t", "--test_dataset", type=str, default="./dataset/corpus/test.txt", help="test set for evaluate train set") #parser.add_argument("-v", "--vocab_path", required=True, type=str, help="built vocab model path with bert-vocab") parser.add_argument("-o", "--output_path", type=str, default="./output/bert.model", help="ex)output/bert.model") parser.add_argument("-hs", "--hidden", type=int, default=256, help="hidden size of transformer model") parser.add_argument("-l", "--layers", type=int, default=8, help="number of layers") parser.add_argument("-a", "--attn_heads", type=int, default=8, help="number of attention heads") parser.add_argument("-s", "--seq_len", type=int, default=512, help="maximum sequence len") parser.add_argument("-b", "--batch_size", type=int, default=8, help="number of batch_size") parser.add_argument("-e", "--epochs", type=int, default=10, help="number of epochs") parser.add_argument("-w", "--num_workers", type=int, default=1, help="dataloader worker size") parser.add_argument("--with_cuda", type=bool, default=True, help="training with CUDA: true, or false") parser.add_argument("--log_freq", type=int, default=10, help="printing loss every n iter: setting n") parser.add_argument("--corpus_lines", type=int, default=5110, help="total number of lines in corpus") parser.add_argument("--cuda_devices", type=int, nargs='+', default=None, help="CUDA device ids") parser.add_argument("--on_memory", type=bool, default=False, help="Loading on memory: true or false") parser.add_argument("--lr", type=float, default=1e-3, help="learning rate of adam") parser.add_argument("--adam_weight_decay", type=float, default=0.01, help="weight_decay of adam") parser.add_argument("--adam_beta1", type=float, default=0.9, help="adam first beta value") parser.add_argument("--adam_beta2", type=float, default=0.999, help="adam first beta value") args = parser.parse_args() print("Loading Vocab") tokenizer = BertTokenizer("./dataset/corpus") vocab_size = tokenizer.get_vocab_size() print("Vocab Size: ", vocab_size) print("Loading Train Dataset", args.train_dataset) train_dataset = BERTDataset(args.train_dataset, tokenizer, seq_len=args.seq_len, corpus_lines=args.corpus_lines, on_memory=args.on_memory) print("Loading Test Dataset", args.test_dataset) test_dataset = BERTDataset(args.test_dataset, tokenizer, seq_len=args.seq_len, on_memory=args.on_memory) \ if args.test_dataset is not None else None print("Creating Dataloader") train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers) test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \ if test_dataset is not None else None print("Building BERT model") bert = BERT(vocab_size, tokenizer.pad_index, hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads) print("Creating BERT Trainer") trainer = BERTTrainer(bert, vocab_size, train_dataloader=train_data_loader, test_dataloader=test_data_loader, lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, with_cuda=args.with_cuda, cuda_devices=args.cuda_devices, log_freq=args.log_freq) print("Training Start") for epoch in range(args.epochs): trainer.train(epoch) trainer.save(epoch, args.output_path) if test_data_loader is not None: trainer.test(epoch) if __name__ == "__main__": train()