119 lines
3.8 KiB
Python
119 lines
3.8 KiB
Python
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import tensorflow as tf
|
|
|
|
from graphsage.inits import zeros
|
|
|
|
flags = tf.app.flags
|
|
FLAGS = flags.FLAGS
|
|
|
|
# DISCLAIMER:
|
|
# Boilerplate parts of this code file were originally forked from
|
|
# https://github.com/tkipf/gcn
|
|
# which itself was very inspired by the keras package
|
|
# (A full license with non-anonymized attributions will be provided in the
|
|
# public repo of this code base)
|
|
|
|
# global unique layer ID dictionary for layer name assignment
|
|
_LAYER_UIDS = {}
|
|
|
|
def get_layer_uid(layer_name=''):
|
|
"""Helper function, assigns unique layer IDs."""
|
|
if layer_name not in _LAYER_UIDS:
|
|
_LAYER_UIDS[layer_name] = 1
|
|
return 1
|
|
else:
|
|
_LAYER_UIDS[layer_name] += 1
|
|
return _LAYER_UIDS[layer_name]
|
|
|
|
class Layer(object):
|
|
"""Base layer class. Defines basic API for all layer objects.
|
|
Implementation inspired by keras (http://keras.io).
|
|
# Properties
|
|
name: String, defines the variable scope of the layer.
|
|
logging: Boolean, switches Tensorflow histogram logging on/off
|
|
|
|
# Methods
|
|
_call(inputs): Defines computation graph of layer
|
|
(i.e. takes input, returns output)
|
|
__call__(inputs): Wrapper for _call()
|
|
_log_vars(): Log all variables
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
allowed_kwargs = {'name', 'logging', 'model_size'}
|
|
for kwarg in kwargs.keys():
|
|
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
|
|
name = kwargs.get('name')
|
|
if not name:
|
|
layer = self.__class__.__name__.lower()
|
|
name = layer + '_' + str(get_layer_uid(layer))
|
|
self.name = name
|
|
self.vars = {}
|
|
logging = kwargs.get('logging', False)
|
|
self.logging = logging
|
|
self.sparse_inputs = False
|
|
|
|
def _call(self, inputs):
|
|
return inputs
|
|
|
|
def __call__(self, inputs):
|
|
with tf.name_scope(self.name):
|
|
if self.logging and not self.sparse_inputs:
|
|
tf.summary.histogram(self.name + '/inputs', inputs)
|
|
outputs = self._call(inputs)
|
|
if self.logging:
|
|
tf.summary.histogram(self.name + '/outputs', outputs)
|
|
return outputs
|
|
|
|
def _log_vars(self):
|
|
for var in self.vars:
|
|
tf.summary.histogram(self.name + '/vars/' + var, self.vars[var])
|
|
|
|
|
|
class Dense(Layer):
|
|
"""Dense layer."""
|
|
def __init__(self, input_dim, output_dim, dropout=0.,
|
|
act=tf.nn.relu, placeholders=None, bias=True, featureless=False,
|
|
sparse_inputs=False, **kwargs):
|
|
super(Dense, self).__init__(**kwargs)
|
|
|
|
self.dropout = dropout
|
|
|
|
self.act = act
|
|
self.featureless = featureless
|
|
self.bias = bias
|
|
self.input_dim = input_dim
|
|
self.output_dim = output_dim
|
|
|
|
# helper variable for sparse dropout
|
|
self.sparse_inputs = sparse_inputs
|
|
if sparse_inputs:
|
|
self.num_features_nonzero = placeholders['num_features_nonzero']
|
|
|
|
with tf.variable_scope(self.name + '_vars'):
|
|
self.vars['weights'] = tf.get_variable('weights', shape=(input_dim, output_dim),
|
|
dtype=tf.float32,
|
|
initializer=tf.contrib.layers.xavier_initializer(),
|
|
regularizer=tf.contrib.layers.l2_regularizer(FLAGS.weight_decay))
|
|
if self.bias:
|
|
self.vars['bias'] = zeros([output_dim], name='bias')
|
|
|
|
if self.logging:
|
|
self._log_vars()
|
|
|
|
def _call(self, inputs):
|
|
x = inputs
|
|
|
|
x = tf.nn.dropout(x, 1-self.dropout)
|
|
|
|
# transform
|
|
output = tf.matmul(x, self.vars['weights'])
|
|
|
|
# bias
|
|
if self.bias:
|
|
output += self.vars['bias']
|
|
|
|
return self.act(output)
|