graphsage-tf/graphsage/unsupervised_train.py
2017-10-10 15:46:12 -07:00

383 lines
17 KiB
Python

from __future__ import division
from __future__ import print_function
import os
import time
import tensorflow as tf
import numpy as np
from graphsage.models import SampleAndAggregate, SAGEInfo, Node2VecModel
from graphsage.minibatch import EdgeMinibatchIterator
from graphsage.neigh_samplers import UniformNeighborSampler
from graphsage.utils import load_data
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
# Set random seed
seed = 123
np.random.seed(seed)
tf.set_random_seed(seed)
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
tf.app.flags.DEFINE_boolean('log_device_placement', False,
"""Whether to log device placement.""")
#core params..
flags.DEFINE_string('model', 'graphsage', 'model names. See README for possible values.')
flags.DEFINE_float('learning_rate', 0.00001, 'initial learning rate.')
flags.DEFINE_string("model_size", "small", "Can be big or small; model specific def'ns")
flags.DEFINE_string('train_prefix', '', 'name of the object file that stores the training data. must be specified.')
# left to default values in main experiments
flags.DEFINE_integer('epochs', 1, 'number of epochs to train.')
flags.DEFINE_float('dropout', 0.0, 'dropout rate (1 - keep probability).')
flags.DEFINE_float('weight_decay', 0.0, 'weight for l2 loss on embedding matrix.')
flags.DEFINE_integer('max_degree', 100, 'maximum node degree.')
flags.DEFINE_integer('samples_1', 25, 'number of samples in layer 1')
flags.DEFINE_integer('samples_2', 10, 'number of users samples in layer 2')
flags.DEFINE_integer('dim_1', 128, 'Size of output dim (final is 2x this, if using concat)')
flags.DEFINE_integer('dim_2', 128, 'Size of output dim (final is 2x this, if using concat)')
flags.DEFINE_boolean('random_context', True, 'Whether to use random context or direct edges')
flags.DEFINE_integer('neg_sample_size', 20, 'number of negative samples')
flags.DEFINE_integer('batch_size', 512, 'minibatch size.')
flags.DEFINE_integer('n2v_test_epochs', 1, 'Number of new SGD epochs for n2v.')
flags.DEFINE_integer('identity_dim', 0, 'Set to positive value to use identity embedding features of that dimension. Default 0.')
#logging, saving, validation settings etc.
flags.DEFINE_boolean('save_embeddings', True, 'whether to save embeddings for all nodes after training')
flags.DEFINE_string('base_log_dir', '.', 'base directory for logging and saving embeddings')
flags.DEFINE_integer('validate_iter', 5000, "how often to run a validation minibatch.")
flags.DEFINE_integer('validate_batch_size', 256, "how many nodes per validation sample.")
flags.DEFINE_integer('gpu', 1, "which gpu to use.")
flags.DEFINE_integer('print_every', 50, "How often to print training info.")
flags.DEFINE_integer('max_total_steps', 10**10, "Maximum total number of iterations")
os.environ["CUDA_VISIBLE_DEVICES"]=str(FLAGS.gpu)
GPU_MEM_FRACTION = 0.8
def log_dir():
log_dir = FLAGS.base_log_dir + "/unsup-" + FLAGS.train_prefix.split("/")[-2]
log_dir += "/{model:s}_{model_size:s}_{lr:0.6f}/".format(
model=FLAGS.model,
model_size=FLAGS.model_size,
lr=FLAGS.learning_rate)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
# Define model evaluation function
def evaluate(sess, model, minibatch_iter, size=None):
t_test = time.time()
feed_dict_val = minibatch_iter.val_feed_dict(size)
outs_val = sess.run([model.loss, model.ranks, model.mrr],
feed_dict=feed_dict_val)
return outs_val[0], outs_val[1], outs_val[2], (time.time() - t_test)
def incremental_evaluate(sess, model, minibatch_iter, size):
t_test = time.time()
finished = False
val_losses = []
val_mrrs = []
iter_num = 0
while not finished:
feed_dict_val, finished, _ = minibatch_iter.incremental_val_feed_dict(size, iter_num)
iter_num += 1
outs_val = sess.run([model.loss, model.ranks, model.mrr],
feed_dict=feed_dict_val)
val_losses.append(outs_val[0])
val_mrrs.append(outs_val[2])
return np.mean(val_losses), np.mean(val_mrrs), (time.time() - t_test)
def save_val_embeddings(sess, model, minibatch_iter, size, out_dir, mod=""):
val_embeddings = []
finished = False
seen = set([])
nodes = []
iter_num = 0
name = "val"
while not finished:
feed_dict_val, finished, edges = minibatch_iter.incremental_embed_feed_dict(size, iter_num)
iter_num += 1
outs_val = sess.run([model.loss, model.mrr, model.outputs1],
feed_dict=feed_dict_val)
#ONLY SAVE FOR embeds1 because of planetoid
for i, edge in enumerate(edges):
if not edge[0] in seen:
val_embeddings.append(outs_val[-1][i,:])
nodes.append(edge[0])
seen.add(edge[0])
if not os.path.exists(out_dir):
os.makedirs(out_dir)
val_embeddings = np.vstack(val_embeddings)
np.save(out_dir + name + mod + ".npy", val_embeddings)
with open(out_dir + name + mod + ".txt", "w") as fp:
fp.write("\n".join(map(str,nodes)))
def construct_placeholders():
# Define placeholders
placeholders = {
'batch1' : tf.placeholder(tf.int32, shape=(None), name='batch1'),
'batch2' : tf.placeholder(tf.int32, shape=(None), name='batch2'),
# negative samples for all nodes in the batch
'neg_samples': tf.placeholder(tf.int32, shape=(None,),
name='neg_sample_size'),
'dropout': tf.placeholder_with_default(0., shape=(), name='dropout'),
'batch_size' : tf.placeholder(tf.int32, name='batch_size'),
}
return placeholders
def train(train_data, test_data=None):
G = train_data[0]
features = train_data[1]
id_map = train_data[2]
if not features is None:
# pad with dummy zero vector
features = np.vstack([features, np.zeros((features.shape[1],))])
context_pairs = train_data[3] if FLAGS.random_context else None
placeholders = construct_placeholders()
minibatch = EdgeMinibatchIterator(G,
id_map,
placeholders, batch_size=FLAGS.batch_size,
max_degree=FLAGS.max_degree,
num_neg_samples=FLAGS.neg_sample_size,
context_pairs = context_pairs)
adj_info = tf.Variable(tf.constant(minibatch.adj, dtype=tf.int32), trainable=False, name="adj_info")
if FLAGS.model == 'graphsage_mean':
# Create model
sampler = UniformNeighborSampler(adj_info)
layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1),
SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)]
model = SampleAndAggregate(placeholders,
features,
adj_info,
minibatch.deg,
layer_infos=layer_infos,
model_size=FLAGS.model_size,
identity_dim = FLAGS.identity_dim,
logging=True)
elif FLAGS.model == 'gcn':
# Create model
sampler = UniformNeighborSampler(adj_info)
layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, 2*FLAGS.dim_1),
SAGEInfo("node", sampler, FLAGS.samples_2, 2*FLAGS.dim_2)]
model = SampleAndAggregate(placeholders,
features,
adj_info,
minibatch.deg,
layer_infos=layer_infos,
aggregator_type="gcn",
model_size=FLAGS.model_size,
identity_dim = FLAGS.identity_dim,
concat=False,
logging=True)
elif FLAGS.model == 'graphsage_seq':
sampler = UniformNeighborSampler(adj_info)
layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1),
SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)]
model = SampleAndAggregate(placeholders,
features,
adj_info,
minibatch.deg,
layer_infos=layer_infos,
identity_dim = FLAGS.identity_dim,
aggregator_type="seq",
model_size=FLAGS.model_size,
logging=True)
elif FLAGS.model == 'graphsage_maxpool':
sampler = UniformNeighborSampler(adj_info)
layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1),
SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)]
model = SampleAndAggregate(placeholders,
features,
adj_info,
minibatch.deg,
layer_infos=layer_infos,
aggregator_type="maxpool",
model_size=FLAGS.model_size,
identity_dim = FLAGS.identity_dim,
logging=True)
elif FLAGS.model == 'graphsage_meanpool':
sampler = UniformNeighborSampler(adj_info)
layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1),
SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)]
model = SampleAndAggregate(placeholders,
features,
adj_info,
minibatch.deg,
layer_infos=layer_infos,
aggregator_type="meanpool",
model_size=FLAGS.model_size,
identity_dim = FLAGS.identity_dim,
logging=True)
elif FLAGS.model == 'n2v':
model = Node2VecModel(placeholders, features.shape[0],
minibatch.deg,
#2x because graphsage uses concat
nodevec_dim=2*FLAGS.dim_1,
lr=FLAGS.learning_rate)
else:
raise Exception('Error: model name unrecognized.')
config = tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)
config.gpu_options.allow_growth = True
#config.gpu_options.per_process_gpu_memory_fraction = GPU_MEM_FRACTION
config.allow_soft_placement = True
# Initialize session
sess = tf.Session(config=config)
merged = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(log_dir(), sess.graph)
# Init variables
sess.run(tf.global_variables_initializer())
# Train model
train_shadow_mrr = None
shadow_mrr = None
total_steps = 0
avg_time = 0.0
epoch_val_costs = []
train_adj_info = tf.assign(adj_info, minibatch.adj)
val_adj_info = tf.assign(adj_info, minibatch.test_adj)
for epoch in range(FLAGS.epochs):
minibatch.shuffle()
iter = 0
print('Epoch: %04d' % (epoch + 1))
epoch_val_costs.append(0)
while not minibatch.end():
# Construct feed dictionary
feed_dict = minibatch.next_minibatch_feed_dict()
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
t = time.time()
# Training step
outs = sess.run([merged, model.opt_op, model.loss, model.ranks, model.aff_all,
model.mrr, model.outputs1], feed_dict=feed_dict)
train_cost = outs[2]
train_mrr = outs[5]
if train_shadow_mrr is None:
train_shadow_mrr = train_mrr#
else:
train_shadow_mrr -= (1-0.99) * (train_shadow_mrr - train_mrr)
if iter % FLAGS.validate_iter == 0:
# Validation
sess.run(val_adj_info.op)
val_cost, ranks, val_mrr, duration = evaluate(sess, model, minibatch, size=FLAGS.validate_batch_size)
sess.run(train_adj_info.op)
epoch_val_costs[-1] += val_cost
if shadow_mrr is None:
shadow_mrr = val_mrr
else:
shadow_mrr -= (1-0.99) * (shadow_mrr - val_mrr)
if total_steps % FLAGS.print_every == 0:
summary_writer.add_summary(outs[0], total_steps)
# Print results
avg_time = (avg_time * total_steps + time.time() - t) / (total_steps + 1)
if total_steps % FLAGS.print_every == 0:
print("Iter:", '%04d' % iter,
"train_loss=", "{:.5f}".format(train_cost),
"train_mrr=", "{:.5f}".format(train_mrr),
"train_mrr_ema=", "{:.5f}".format(train_shadow_mrr), # exponential moving average
"val_loss=", "{:.5f}".format(val_cost),
"val_mrr=", "{:.5f}".format(val_mrr),
"val_mrr_ema=", "{:.5f}".format(shadow_mrr), # exponential moving average
"time=", "{:.5f}".format(avg_time))
iter += 1
total_steps += 1
if total_steps > FLAGS.max_total_steps:
break
if total_steps > FLAGS.max_total_steps:
break
print("Optimization Finished!")
if FLAGS.save_embeddings:
sess.run(val_adj_info.op)
save_val_embeddings(sess, model, minibatch, FLAGS.validate_batch_size, log_dir())
if FLAGS.model == "n2v":
# stopping the gradient for the already trained nodes
train_ids = tf.constant([[id_map[n]] for n in G.nodes_iter() if not G.node[n]['val'] and not G.node[n]['test']],
dtype=tf.int32)
test_ids = tf.constant([[id_map[n]] for n in G.nodes_iter() if G.node[n]['val'] or G.node[n]['test']],
dtype=tf.int32)
update_nodes = tf.nn.embedding_lookup(model.context_embeds, tf.squeeze(test_ids))
no_update_nodes = tf.nn.embedding_lookup(model.context_embeds,tf.squeeze(train_ids))
update_nodes = tf.scatter_nd(test_ids, update_nodes, tf.shape(model.context_embeds))
no_update_nodes = tf.stop_gradient(tf.scatter_nd(train_ids, no_update_nodes, tf.shape(model.context_embeds)))
model.context_embeds = update_nodes + no_update_nodes
sess.run(model.context_embeds)
# run random walks
from graphsage.utils import run_random_walks
nodes = [n for n in G.nodes_iter() if G.node[n]["val"] or G.node[n]["test"]]
start_time = time.time()
pairs = run_random_walks(G, nodes, num_walks=50)
walk_time = time.time() - start_time
test_minibatch = EdgeMinibatchIterator(G,
id_map,
placeholders, batch_size=FLAGS.batch_size,
max_degree=FLAGS.max_degree,
num_neg_samples=FLAGS.neg_sample_size,
context_pairs = pairs,
n2v_retrain=True,
fixed_n2v=True)
start_time = time.time()
print("Doing test training for n2v.")
test_steps = 0
for epoch in range(FLAGS.n2v_test_epochs):
test_minibatch.shuffle()
while not test_minibatch.end():
feed_dict = test_minibatch.next_minibatch_feed_dict()
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
outs = sess.run([model.opt_op, model.loss, model.ranks, model.aff_all,
model.mrr, model.outputs1], feed_dict=feed_dict)
if test_steps % FLAGS.print_every == 0:
print("Iter:", '%04d' % test_steps,
"train_loss=", "{:.5f}".format(outs[1]),
"train_mrr=", "{:.5f}".format(outs[-2]))
test_steps += 1
train_time = time.time() - start_time
save_val_embeddings(sess, model, minibatch, FLAGS.validate_batch_size, log_dir(), mod="-test")
print("Total time: ", train_time+walk_time)
print("Walk time: ", walk_time)
print("Train time: ", train_time)
def main(argv=None):
print("Loading training data..")
train_data = load_data(FLAGS.train_prefix, load_walks=True)
print("Done loading training data..")
train(train_data)
if __name__ == '__main__':
tf.app.run()