from __future__ import division from __future__ import print_function from graphsage.inits import zeros from graphsage.layers import Layer import tensorflow as tf flags = tf.app.flags FLAGS = flags.FLAGS class BipartiteEdgePredLayer(Layer): def __init__(self, input_dim1, input_dim2, placeholders, dropout=False, act=tf.nn.sigmoid, loss_fn='xent', bias=False, bilinear_weights=False, **kwargs): """ Basic class that applies skip-gram-like loss (i.e., dot product of node+target and node and negative samples) Args: bilinear_weights: use a bilinear weight for affinity calculation: u^T A v. If set to false, it is assumed that input dimensions are the same and the affinity will be based on dot product. """ super(BipartiteEdgePredLayer, self).__init__(**kwargs) self.input_dim1 = input_dim1 self.input_dim2 = input_dim2 self.act = act self.bias = bias self.eps = 1e-7 # Margin for hinge loss self.margin = 0.1 self.bilinear_weights = bilinear_weights if dropout: self.dropout = placeholders['dropout'] else: self.dropout = 0. # output a likelihood term self.output_dim = 1 with tf.variable_scope(self.name + '_vars'): # bilinear form if bilinear_weights: #self.vars['weights'] = glorot([input_dim1, input_dim2], # name='pred_weights') self.vars['weights'] = tf.get_variable( 'pred_weights', shape=(input_dim1, input_dim2), dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer()) if self.bias: self.vars['bias'] = zeros([self.output_dim], name='bias') if loss_fn == 'xent': self.loss_fn = self._xent_loss elif loss_fn == 'skipgram': self.loss_fn = self._skipgram_loss elif loss_fn == 'hinge': self.loss_fn = self._hinge_loss if self.logging: self._log_vars() def affinity(self, inputs1, inputs2): """ Affinity score between batch of inputs1 and inputs2. Args: inputs1: tensor of shape [batch_size x feature_size]. """ # shape: [batch_size, input_dim1] if self.bilinear_weights: prod = tf.matmul(inputs2, tf.transpose(self.vars['weights'])) self.prod = prod result = tf.reduce_sum(inputs1 * prod, axis=1) else: result = tf.reduce_sum(inputs1 * inputs2, axis=1) return result def neg_cost(self, inputs1, neg_samples, hard_neg_samples=None): """ For each input in batch, compute the sum of its affinity to negative samples. Returns: Tensor of shape [batch_size x num_neg_samples]. For each node, a list of affinities to negative samples is computed. """ if self.bilinear_weights: inputs1 = tf.matmul(inputs1, self.vars['weights']) neg_aff = tf.matmul(inputs1, tf.transpose(neg_samples)) return neg_aff def loss(self, inputs1, inputs2, neg_samples): """ negative sampling loss. Args: neg_samples: tensor of shape [num_neg_samples x input_dim2]. Negative samples for all inputs in batch inputs1. """ return self.loss_fn(inputs1, inputs2, neg_samples) def _xent_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None): aff = self.affinity(inputs1, inputs2) neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples) true_xent = tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(aff), logits=aff) negative_xent = tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.zeros_like(neg_aff), logits=neg_aff) loss = tf.reduce_sum(true_xent) + 0.01*tf.reduce_sum(negative_xent) return loss def _skipgram_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None): aff = self.affinity(inputs1, inputs2) neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples) neg_cost = tf.log(tf.reduce_sum(tf.exp(neg_aff), axis=1)) loss = tf.reduce_sum(aff - neg_cost) return loss def _hinge_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None): aff = self.affinity(inputs1, inputs2) neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples) diff = tf.nn.relu(tf.subtract(neg_aff, tf.expand_dims(aff, 1) - self.margin), name='diff') loss = tf.reduce_sum(diff) self.neg_shape = tf.shape(neg_aff) return loss def weights_norm(self): return tf.nn.l2_norm(self.vars['weights'])