from __future__ import division from __future__ import print_function import tensorflow as tf from graphsage.inits import zeros flags = tf.app.flags FLAGS = flags.FLAGS # DISCLAIMER: # Boilerplate parts of this code file were originally forked from # https://github.com/tkipf/gcn # which itself was very inspired by the keras package # global unique layer ID dictionary for layer name assignment _LAYER_UIDS = {} def get_layer_uid(layer_name=''): """Helper function, assigns unique layer IDs.""" if layer_name not in _LAYER_UIDS: _LAYER_UIDS[layer_name] = 1 return 1 else: _LAYER_UIDS[layer_name] += 1 return _LAYER_UIDS[layer_name] class Layer(object): """Base layer class. Defines basic API for all layer objects. Implementation inspired by keras (http://keras.io). # Properties name: String, defines the variable scope of the layer. logging: Boolean, switches Tensorflow histogram logging on/off # Methods _call(inputs): Defines computation graph of layer (i.e. takes input, returns output) __call__(inputs): Wrapper for _call() _log_vars(): Log all variables """ def __init__(self, **kwargs): allowed_kwargs = {'name', 'logging', 'model_size'} for kwarg in kwargs.keys(): assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg name = kwargs.get('name') if not name: layer = self.__class__.__name__.lower() name = layer + '_' + str(get_layer_uid(layer)) self.name = name self.vars = {} logging = kwargs.get('logging', False) self.logging = logging self.sparse_inputs = False def _call(self, inputs): return inputs def __call__(self, inputs): with tf.name_scope(self.name): if self.logging and not self.sparse_inputs: tf.summary.histogram(self.name + '/inputs', inputs) outputs = self._call(inputs) if self.logging: tf.summary.histogram(self.name + '/outputs', outputs) return outputs def _log_vars(self): for var in self.vars: tf.summary.histogram(self.name + '/vars/' + var, self.vars[var]) class Dense(Layer): """Dense layer.""" def __init__(self, input_dim, output_dim, dropout=0., act=tf.nn.relu, placeholders=None, bias=True, featureless=False, sparse_inputs=False, **kwargs): super(Dense, self).__init__(**kwargs) self.dropout = dropout self.act = act self.featureless = featureless self.bias = bias self.input_dim = input_dim self.output_dim = output_dim # helper variable for sparse dropout self.sparse_inputs = sparse_inputs if sparse_inputs: self.num_features_nonzero = placeholders['num_features_nonzero'] with tf.variable_scope(self.name + '_vars'): self.vars['weights'] = tf.get_variable('weights', shape=(input_dim, output_dim), dtype=tf.float32, initializer=tf.contrib.layers.xavier_initializer(), regularizer=tf.contrib.layers.l2_regularizer(FLAGS.weight_decay)) if self.bias: self.vars['bias'] = zeros([output_dim], name='bias') if self.logging: self._log_vars() def _call(self, inputs): x = inputs x = tf.nn.dropout(x, 1-self.dropout) # transform output = tf.matmul(x, self.vars['weights']) # bias if self.bias: output += self.vars['bias'] return self.act(output)