import tensorflow as tf import numpy as np # DISCLAIMER: # Parts of this code file are derived from # https://github.com/tkipf/gcn # which is under an identical MIT license as GraphSAGE def uniform(shape, scale=0.05, name=None): """Uniform init.""" initial = tf.random_uniform(shape, minval=-scale, maxval=scale, dtype=tf.float32) return tf.Variable(initial, name=name) def glorot(shape, name=None): """Glorot & Bengio (AISTATS 2010) init.""" init_range = np.sqrt(6.0/(shape[0]+shape[1])) initial = tf.random_uniform(shape, minval=-init_range, maxval=init_range, dtype=tf.float32) return tf.Variable(initial, name=name) def zeros(shape, name=None): """All zeros.""" initial = tf.zeros(shape, dtype=tf.float32) return tf.Variable(initial, name=name) def ones(shape, name=None): """All ones.""" initial = tf.ones(shape, dtype=tf.float32) return tf.Variable(initial, name=name)