Compare commits

..

No commits in common. "b80531bad7cf28f361624c51b38efa699619bb53" and "0afab746b26ae18150097b73ad59e143bca2c943" have entirely different histories.

11 changed files with 5 additions and 35 deletions

View File

@ -1,4 +1,4 @@
FROM tensorflow/tensorflow:1.3.0
FROM gcr.io/tensorflow/tensorflow:1.3.0
RUN pip install networkx==1.11
RUN rm /notebooks/*

View File

@ -1,4 +1,4 @@
FROM tensorflow/tensorflow:1.3.0-gpu
FROM gcr.io/tensorflow/tensorflow:1.3.0-gpu
RUN pip install networkx==1.11
RUN rm /notebooks/*

View File

@ -7,7 +7,6 @@
### Overview
This directory contains code necessary to run the GraphSage algorithm.
GraphSage can be viewed as a stochastic generalization of graph convolutions, and it is especially useful for massive, dynamic graphs that contain rich feature information.
See our [paper](https://arxiv.org/pdf/1706.02216.pdf) for details on the algorithm.
@ -36,11 +35,7 @@ If you make use of this code or the GraphSage algorithm in your work, please cit
### Requirements
Recent versions of TensorFlow, numpy, scipy, sklearn, and networkx are required (but networkx must be <=1.11). You can install all the required packages using the following command:
$ pip install -r requirements.txt
To guarantee that you have the right package versions, you can use [docker](https://docs.docker.com/) to easily set up a virtual environment. See the Docker subsection below for more info.
Recent versions of TensorFlow, numpy, scipy, and networkx are required (but networkx must be <=1.11). To guarantee that you have the right package versions, you can use [docker](https://docs.docker.com/) to easily set up a virtual environment. See the Docker subsection below for more info.
#### Docker

View File

@ -477,7 +477,7 @@ class Node2VecModel(GeneralizedModel):
def _loss(self):
aff = tf.reduce_sum(tf.multiply(self.outputs1, self.outputs2), 1) + self.outputs2_bias
neg_aff = tf.matmul(self.outputs1, tf.transpose(self.neg_outputs)) + self.neg_outputs_bias
neg_aff = tf.matmul(self.outputs2, tf.transpose(self.neg_outputs)) + self.neg_outputs_bias
true_xent = tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.ones_like(aff), logits=aff)
negative_xent = tf.nn.sigmoid_cross_entropy_with_logits(

View File

@ -8,7 +8,7 @@ import os
import networkx as nx
from networkx.readwrite import json_graph
version_info = list(map(int, nx.__version__.split('.')))
version_info = map(int, nx.__version__.split('.'))
major = version_info[0]
minor = version_info[1]
assert (major <= 1) and (minor <= 11), "networkx major version > 1.11"

View File

@ -1,25 +0,0 @@
absl-py==0.2.2
astor==0.6.2
backports.weakref==1.0.post1
bleach==1.5.0
decorator==4.3.0
enum34==1.1.6
funcsigs==1.0.2
futures==3.2.0
gast==0.2.0
grpcio==1.12.1
html5lib==0.9999999
Markdown==2.6.11
mock==2.0.0
networkx==1.11
numpy==1.14.5
pbr==4.0.4
protobuf==3.6.0
scikit-learn==0.19.1
scipy==1.1.0
six==1.11.0
sklearn==0.0
tensorboard==1.8.0
tensorflow==1.8.0
termcolor==1.1.0
Werkzeug==0.14.1