Compare commits
No commits in common. "b80531bad7cf28f361624c51b38efa699619bb53" and "0afab746b26ae18150097b73ad59e143bca2c943" have entirely different histories.
b80531bad7
...
0afab746b2
@ -1,4 +1,4 @@
|
||||
FROM tensorflow/tensorflow:1.3.0
|
||||
FROM gcr.io/tensorflow/tensorflow:1.3.0
|
||||
|
||||
RUN pip install networkx==1.11
|
||||
RUN rm /notebooks/*
|
||||
|
@ -1,4 +1,4 @@
|
||||
FROM tensorflow/tensorflow:1.3.0-gpu
|
||||
FROM gcr.io/tensorflow/tensorflow:1.3.0-gpu
|
||||
|
||||
RUN pip install networkx==1.11
|
||||
RUN rm /notebooks/*
|
||||
|
@ -7,7 +7,6 @@
|
||||
|
||||
### Overview
|
||||
|
||||
|
||||
This directory contains code necessary to run the GraphSage algorithm.
|
||||
GraphSage can be viewed as a stochastic generalization of graph convolutions, and it is especially useful for massive, dynamic graphs that contain rich feature information.
|
||||
See our [paper](https://arxiv.org/pdf/1706.02216.pdf) for details on the algorithm.
|
||||
@ -36,11 +35,7 @@ If you make use of this code or the GraphSage algorithm in your work, please cit
|
||||
|
||||
### Requirements
|
||||
|
||||
Recent versions of TensorFlow, numpy, scipy, sklearn, and networkx are required (but networkx must be <=1.11). You can install all the required packages using the following command:
|
||||
|
||||
$ pip install -r requirements.txt
|
||||
|
||||
To guarantee that you have the right package versions, you can use [docker](https://docs.docker.com/) to easily set up a virtual environment. See the Docker subsection below for more info.
|
||||
Recent versions of TensorFlow, numpy, scipy, and networkx are required (but networkx must be <=1.11). To guarantee that you have the right package versions, you can use [docker](https://docs.docker.com/) to easily set up a virtual environment. See the Docker subsection below for more info.
|
||||
|
||||
#### Docker
|
||||
|
||||
|
@ -477,7 +477,7 @@ class Node2VecModel(GeneralizedModel):
|
||||
|
||||
def _loss(self):
|
||||
aff = tf.reduce_sum(tf.multiply(self.outputs1, self.outputs2), 1) + self.outputs2_bias
|
||||
neg_aff = tf.matmul(self.outputs1, tf.transpose(self.neg_outputs)) + self.neg_outputs_bias
|
||||
neg_aff = tf.matmul(self.outputs2, tf.transpose(self.neg_outputs)) + self.neg_outputs_bias
|
||||
true_xent = tf.nn.sigmoid_cross_entropy_with_logits(
|
||||
labels=tf.ones_like(aff), logits=aff)
|
||||
negative_xent = tf.nn.sigmoid_cross_entropy_with_logits(
|
||||
|
@ -8,7 +8,7 @@ import os
|
||||
|
||||
import networkx as nx
|
||||
from networkx.readwrite import json_graph
|
||||
version_info = list(map(int, nx.__version__.split('.')))
|
||||
version_info = map(int, nx.__version__.split('.'))
|
||||
major = version_info[0]
|
||||
minor = version_info[1]
|
||||
assert (major <= 1) and (minor <= 11), "networkx major version > 1.11"
|
||||
|
@ -1,25 +0,0 @@
|
||||
absl-py==0.2.2
|
||||
astor==0.6.2
|
||||
backports.weakref==1.0.post1
|
||||
bleach==1.5.0
|
||||
decorator==4.3.0
|
||||
enum34==1.1.6
|
||||
funcsigs==1.0.2
|
||||
futures==3.2.0
|
||||
gast==0.2.0
|
||||
grpcio==1.12.1
|
||||
html5lib==0.9999999
|
||||
Markdown==2.6.11
|
||||
mock==2.0.0
|
||||
networkx==1.11
|
||||
numpy==1.14.5
|
||||
pbr==4.0.4
|
||||
protobuf==3.6.0
|
||||
scikit-learn==0.19.1
|
||||
scipy==1.1.0
|
||||
six==1.11.0
|
||||
sklearn==0.0
|
||||
tensorboard==1.8.0
|
||||
tensorflow==1.8.0
|
||||
termcolor==1.1.0
|
||||
Werkzeug==0.14.1
|
Loading…
Reference in New Issue
Block a user