Compare commits

..

10 Commits

Author SHA1 Message Date
b80531bad7 first 2024-01-04 16:42:59 +08:00
William Hamilton
a0fdef95dc Rename 2018-09-19 15:27:00 -04:00
William Hamilton
73f8d37f14 Rename. 2018-09-19 15:21:13 -04:00
William L Hamilton
c2adbc287d
Merge pull request #40 from aksakalli/master
swtich to Docker Hub from Google Cloud Registry
2018-07-29 17:38:08 -04:00
Rex Ying
d928dc72f6
fix node2vec neg affinity calculation 2018-07-23 17:47:28 -04:00
Can Guney Aksakalli
74fb87dc6f swtich to Docker Hub from Google Cloud Registry 2018-07-03 00:55:16 +02:00
Rex Ying
b48b92b5e7
Merge pull request #37 from m30m/add-requirements
Thanks for providing requirements.txt
2018-06-20 15:11:35 -04:00
Mohammad Amin Khashkhashi Moghaddam
684801b0ca Add requirements.txt file
requirements.txt is a standard for declaring python dependencies
2018-06-18 14:18:13 +04:30
William L Hamilton
8572d2f5d8
Merge pull request #30 from gokceneraslan/patch-1
Make networkx version check Python3 friendly
2018-06-04 18:59:32 -07:00
Gökçen Eraslan
9f23babfe3
Make networkx version check Python3 friendly 2018-03-15 20:37:32 +01:00
11 changed files with 35 additions and 5 deletions

View File

@ -1,4 +1,4 @@
FROM gcr.io/tensorflow/tensorflow:1.3.0 FROM tensorflow/tensorflow:1.3.0
RUN pip install networkx==1.11 RUN pip install networkx==1.11
RUN rm /notebooks/* RUN rm /notebooks/*

View File

@ -1,4 +1,4 @@
FROM gcr.io/tensorflow/tensorflow:1.3.0-gpu FROM tensorflow/tensorflow:1.3.0-gpu
RUN pip install networkx==1.11 RUN pip install networkx==1.11
RUN rm /notebooks/* RUN rm /notebooks/*

View File

@ -7,6 +7,7 @@
### Overview ### Overview
This directory contains code necessary to run the GraphSage algorithm. This directory contains code necessary to run the GraphSage algorithm.
GraphSage can be viewed as a stochastic generalization of graph convolutions, and it is especially useful for massive, dynamic graphs that contain rich feature information. GraphSage can be viewed as a stochastic generalization of graph convolutions, and it is especially useful for massive, dynamic graphs that contain rich feature information.
See our [paper](https://arxiv.org/pdf/1706.02216.pdf) for details on the algorithm. See our [paper](https://arxiv.org/pdf/1706.02216.pdf) for details on the algorithm.
@ -35,7 +36,11 @@ If you make use of this code or the GraphSage algorithm in your work, please cit
### Requirements ### Requirements
Recent versions of TensorFlow, numpy, scipy, and networkx are required (but networkx must be <=1.11). To guarantee that you have the right package versions, you can use [docker](https://docs.docker.com/) to easily set up a virtual environment. See the Docker subsection below for more info. Recent versions of TensorFlow, numpy, scipy, sklearn, and networkx are required (but networkx must be <=1.11). You can install all the required packages using the following command:
$ pip install -r requirements.txt
To guarantee that you have the right package versions, you can use [docker](https://docs.docker.com/) to easily set up a virtual environment. See the Docker subsection below for more info.
#### Docker #### Docker

View File

@ -477,7 +477,7 @@ class Node2VecModel(GeneralizedModel):
def _loss(self): def _loss(self):
aff = tf.reduce_sum(tf.multiply(self.outputs1, self.outputs2), 1) + self.outputs2_bias aff = tf.reduce_sum(tf.multiply(self.outputs1, self.outputs2), 1) + self.outputs2_bias
neg_aff = tf.matmul(self.outputs2, tf.transpose(self.neg_outputs)) + self.neg_outputs_bias neg_aff = tf.matmul(self.outputs1, tf.transpose(self.neg_outputs)) + self.neg_outputs_bias
true_xent = tf.nn.sigmoid_cross_entropy_with_logits( true_xent = tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.ones_like(aff), logits=aff) labels=tf.ones_like(aff), logits=aff)
negative_xent = tf.nn.sigmoid_cross_entropy_with_logits( negative_xent = tf.nn.sigmoid_cross_entropy_with_logits(

View File

@ -8,7 +8,7 @@ import os
import networkx as nx import networkx as nx
from networkx.readwrite import json_graph from networkx.readwrite import json_graph
version_info = map(int, nx.__version__.split('.')) version_info = list(map(int, nx.__version__.split('.')))
major = version_info[0] major = version_info[0]
minor = version_info[1] minor = version_info[1]
assert (major <= 1) and (minor <= 11), "networkx major version > 1.11" assert (major <= 1) and (minor <= 11), "networkx major version > 1.11"

25
requirements.txt Normal file
View File

@ -0,0 +1,25 @@
absl-py==0.2.2
astor==0.6.2
backports.weakref==1.0.post1
bleach==1.5.0
decorator==4.3.0
enum34==1.1.6
funcsigs==1.0.2
futures==3.2.0
gast==0.2.0
grpcio==1.12.1
html5lib==0.9999999
Markdown==2.6.11
mock==2.0.0
networkx==1.11
numpy==1.14.5
pbr==4.0.4
protobuf==3.6.0
scikit-learn==0.19.1
scipy==1.1.0
six==1.11.0
sklearn==0.0
tensorboard==1.8.0
tensorflow==1.8.0
termcolor==1.1.0
Werkzeug==0.14.1