commit
e586ab7abb
3
.dockerignore
Normal file
3
.dockerignore
Normal file
@ -0,0 +1,3 @@
|
||||
.git
|
||||
Dockerfile*
|
||||
.gitignore
|
6
Dockerfile
Normal file
6
Dockerfile
Normal file
@ -0,0 +1,6 @@
|
||||
FROM gcr.io/tensorflow/tensorflow:1.3.0
|
||||
|
||||
RUN pip install networkx==1.11
|
||||
RUN rm /notebooks/*
|
||||
|
||||
COPY . /notebooks
|
6
Dockerfile.gpu
Normal file
6
Dockerfile.gpu
Normal file
@ -0,0 +1,6 @@
|
||||
FROM gcr.io/tensorflow/tensorflow:1.3.0-gpu
|
||||
|
||||
RUN pip install networkx==1.11
|
||||
RUN rm /notebooks/*
|
||||
|
||||
COPY . /notebooks
|
16
README.md
16
README.md
@ -48,6 +48,22 @@ We generally found that performance continued to improve even after the loss was
|
||||
|
||||
*Note:* For the PPI data, and any other multi-ouput dataset that allows individual nodes to belong to multiple classes, it is necessary to set the `--sigmoid` flag during supervised training. By default the model assumes that the dataset is in the "one-hot" categorical setting.
|
||||
|
||||
#### Docker
|
||||
|
||||
You can run GraphSage inside a [docker](https://docs.docker.com/) image. After cloning the project, build and run the image as following:
|
||||
|
||||
$ docker build -t graphsage .
|
||||
$ docker run -it graphsage bash
|
||||
|
||||
or start a Jupyter Notebook instead of bash:
|
||||
|
||||
$ docker run -it -p 8888:8888 graphsage
|
||||
|
||||
You can also run the GPU image using [nvidia-docker](https://github.com/NVIDIA/nvidia-docker):
|
||||
|
||||
$ docker build -t graphsage:gpu -f Dockerfile.gpu .
|
||||
$ nvidia-docker run -it graphsage:gpu bash
|
||||
|
||||
#### Input format
|
||||
As input, at minimum the code requires that a --train_prefix option is specified which specifies the following data files:
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user