Merge branch 'master' of https://github.com/williamleif/GraphSAGE
This commit is contained in:
commit
ca283f88b0
3
.dockerignore
Normal file
3
.dockerignore
Normal file
@ -0,0 +1,3 @@
|
||||
.git
|
||||
Dockerfile*
|
||||
.gitignore
|
6
Dockerfile
Normal file
6
Dockerfile
Normal file
@ -0,0 +1,6 @@
|
||||
FROM gcr.io/tensorflow/tensorflow:1.3.0
|
||||
|
||||
RUN pip install networkx==1.11
|
||||
RUN rm /notebooks/*
|
||||
|
||||
COPY . /notebooks
|
6
Dockerfile.gpu
Normal file
6
Dockerfile.gpu
Normal file
@ -0,0 +1,6 @@
|
||||
FROM gcr.io/tensorflow/tensorflow:1.3.0-gpu
|
||||
|
||||
RUN pip install networkx==1.11
|
||||
RUN rm /notebooks/*
|
||||
|
||||
COPY . /notebooks
|
47
README.md
47
README.md
@ -7,21 +7,21 @@
|
||||
### Overview
|
||||
|
||||
This directory contains code necessary to run the GraphSage algorithm.
|
||||
GraphSage can be viewed as a stochastic generalization of graph convolutions, and it is especially useful for massive, dynamic graphs that contain rich feature information.
|
||||
GraphSage can be viewed as a stochastic generalization of graph convolutions, and it is especially useful for massive, dynamic graphs that contain rich feature information.
|
||||
See our [paper](https://arxiv.org/pdf/1706.02216.pdf) for details on the algorithm.
|
||||
|
||||
*Note:* GraphSage now also has better support for training on smaller, static graphs and graphs that don't have node features.
|
||||
The original algorithm and paper are focused on the task of inductive generalization (i.e., generating embeddings for nodes that were not present during training),
|
||||
but many benchmarks/tasks use simple static graphs that do not necessarily have features.
|
||||
To support this use case, GraphSage now includes optional "identity features" that can be used with or without other node attributes.
|
||||
Including identity features will increase the runtime, but also potentially increase performance (at the usual risk of overfitting).
|
||||
Including identity features will increase the runtime, but also potentially increase performance (at the usual risk of overfitting).
|
||||
See the section on "Running the code" below.
|
||||
|
||||
The example_data subdirectory contains a small example of the protein-protein interaction data,
|
||||
which includes 3 training graphs + one validation graph and one test graph.
|
||||
The full Reddit and PPI datasets (described in the paper) are available on the [project website](http://snap.stanford.edu/graphsage/).
|
||||
|
||||
If you make use of this code or the GraphSage algorithm in your work, please cite the following paper:
|
||||
If you make use of this code or the GraphSage algorithm in your work, please cite the following paper:
|
||||
|
||||
@inproceedings{hamilton2017inductive,
|
||||
author = {Hamilton, William L. and Ying, Rex and Leskovec, Jure},
|
||||
@ -32,36 +32,55 @@ If you make use of this code or the GraphSage algorithm in your work, please cit
|
||||
|
||||
### Requirements
|
||||
|
||||
Recent versions of TensorFlow, numpy, scipy, and networkx are required.
|
||||
Recent versions of TensorFlow, numpy, scipy, and networkx are required (but networkx must be <=1.11). To guarantee that you have the right package versions, you can use [docker](https://docs.docker.com/) to easily set up a virtual environment. See the Docker subsection below for more info.
|
||||
|
||||
#### Docker
|
||||
|
||||
If you do not have [docker](https://docs.docker.com/) installed, you will need to do so. (Just click on the preceding link, the installation is pretty painless).
|
||||
|
||||
You can run GraphSage inside a [docker](https://docs.docker.com/) image. After cloning the project, build and run the image as following:
|
||||
|
||||
$ docker build -t graphsage .
|
||||
$ docker run -it graphsage bash
|
||||
|
||||
or start a Jupyter Notebook instead of bash:
|
||||
|
||||
$ docker run -it -p 8888:8888 graphsage
|
||||
|
||||
You can also run the GPU image using [nvidia-docker](https://github.com/NVIDIA/nvidia-docker):
|
||||
|
||||
$ docker build -t graphsage:gpu -f Dockerfile.gpu .
|
||||
$ nvidia-docker run -it graphsage:gpu bash
|
||||
|
||||
### Running the code
|
||||
|
||||
The example_unsupervised.sh and example_supervised.sh files contain example usages of the code, which use the unsupervised and supervised variants of GraphSage, respectively.
|
||||
|
||||
If your benchmark/task does not require generalizing to unseen data, we recommend you try setting the "--identity_dim" flag to a value in the range [64,256].
|
||||
This flag will make the model embed unique node ids as attributes, which will increase the runtime and number of parameters but also potentially increase the performance.
|
||||
If your benchmark/task does not require generalizing to unseen data, we recommend you try setting the "--identity_dim" flag to a value in the range [64,256].
|
||||
This flag will make the model embed unique node ids as attributes, which will increase the runtime and number of parameters but also potentially increase the performance.
|
||||
Note that you should set this flag and *not* try to pass dense one-hot vectors as features (due to sparsity).
|
||||
The "dimension" of identity features specifies how many parameters there are per node in the sparse identity-feature lookup table.
|
||||
|
||||
Note that example_unsupervised.sh sets a very small max iteration number, which can be increased to improve performance.
|
||||
We generally found that performance continued to improve even after the loss was very near convergence (i.e., even when the loss was decreasing at a very slow rate).
|
||||
We generally found that performance continued to improve even after the loss was very near convergence (i.e., even when the loss was decreasing at a very slow rate).
|
||||
|
||||
*Note:* For the PPI data, and any other multi-ouput dataset that allows individual nodes to belong to multiple classes, it is necessary to set the `--sigmoid` flag during supervised training. By default the model assumes that the dataset is in the "one-hot" categorical setting.
|
||||
|
||||
*Note:* For the PPI data, and any other multi-ouput dataset that allows individual nodes to belong to multiple classes, it is necessary to set the `--sigmoid` flag during supervised training. By default the model assumes that the dataset is in the "one-hot" categorical setting.
|
||||
|
||||
#### Input format
|
||||
As input, at minimum the code requires that a --train_prefix option is specified which specifies the following data files:
|
||||
|
||||
* <train_prefix>-G.json -- A networkx-specified json file describing the input graph. Nodes have 'val' and 'test' attributes specifying if they are a part of the validation and test sets, respectively.
|
||||
* <train_prefix>-G.json -- A networkx-specified json file describing the input graph. Nodes have 'val' and 'test' attributes specifying if they are a part of the validation and test sets, respectively.
|
||||
* <train_prefix>-id_map.json -- A json-stored dictionary mapping the graph node ids to consecutive integers.
|
||||
* <train_prefix>-id_map.json -- A json-stored dictionary mapping the graph node ids to classes.
|
||||
* <train_prefix>-feats.npy [optional] --- A numpy-stored array of node features; ordering given by id_map.json. Can be omitted and only identity features will be used.
|
||||
* <train_prefix>-walks.txt [optional] --- A text file specifying random walk co-occurrences (one pair per line) (*only for unsupervised version of graphsage)
|
||||
|
||||
To run the model on a new dataset, you need to make data files in the format described above.
|
||||
To run the model on a new dataset, you need to make data files in the format described above.
|
||||
To run random walks for the unsupervised model and to generate the <prefix>-walks.txt file)
|
||||
you can use the `run_walks` function in `graphsage.utils`.
|
||||
|
||||
#### Model variants
|
||||
#### Model variants
|
||||
The user must also specify a --model, the variants of which are described in detail in the paper:
|
||||
* graphsage_mean -- GraphSage with mean-based aggregator
|
||||
* graphsage_seq -- GraphSage with LSTM-based aggregator
|
||||
@ -71,7 +90,7 @@ The user must also specify a --model, the variants of which are described in det
|
||||
* n2v -- an implementation of [DeepWalk](https://arxiv.org/abs/1403.6652) (called n2v for short in the code.)
|
||||
|
||||
#### Logging directory
|
||||
Finally, a --base_log_dir should be specified (it defaults to the current directory).
|
||||
Finally, a --base_log_dir should be specified (it defaults to the current directory).
|
||||
The output of the model and log files will be stored in a subdirectory of the base_log_dir.
|
||||
The path to the logged data will be of the form `<sup/unsup>-<data_prefix>/graphsage-<model_description>/`.
|
||||
The supervised model will output F1 scores, while the unsupervised model will train embeddings and store them.
|
||||
@ -87,5 +106,5 @@ The `eval_scripts` directory contains examples of feeding the embeddings into si
|
||||
#### Acknowledgements
|
||||
|
||||
The original version of this code base was originally forked from https://github.com/tkipf/gcn/, and we owe many thanks to Thomas Kipf for making his code available.
|
||||
We also thank Yuanfang Li and Xin Li who contributed to a course project that was based on this work.
|
||||
Please see the [paper](https://arxiv.org/pdf/1706.02216.pdf) for funding details and additional (non-code related) acknowledgements.
|
||||
We also thank Yuanfang Li and Xin Li who contributed to a course project that was based on this work.
|
||||
Please see the [paper](https://arxiv.org/pdf/1706.02216.pdf) for funding details and additional (non-code related) acknowledgements.
|
||||
|
@ -5,6 +5,13 @@ import numpy as np
|
||||
from networkx.readwrite import json_graph
|
||||
from argparse import ArgumentParser
|
||||
|
||||
''' To evaluate the embeddings, we run a logistic regression.
|
||||
Run this script after running unsupervised training.
|
||||
Baseline of using features-only can be run by setting data_dir as 'feat'
|
||||
Example:
|
||||
python eval_scripts/ppi_eval.py ../data/ppi unsup-ppi/n2v_big_0.000010 test
|
||||
'''
|
||||
|
||||
def run_regression(train_embeds, train_labels, test_embeds, test_labels):
|
||||
np.random.seed(1)
|
||||
from sklearn.linear_model import SGDClassifier
|
||||
@ -15,8 +22,12 @@ def run_regression(train_embeds, train_labels, test_embeds, test_labels):
|
||||
dummy.fit(train_embeds, train_labels)
|
||||
log = MultiOutputClassifier(SGDClassifier(loss="log"), n_jobs=10)
|
||||
log.fit(train_embeds, train_labels)
|
||||
print("F1 score", f1_score(test_labels, log.predict(test_embeds), average="micro"))
|
||||
print("Random baseline F1 score", f1_score(test_labels, dummy.predict(test_embeds), average="micro"))
|
||||
|
||||
f1 = 0
|
||||
for i in range(test_labels.shape[1]):
|
||||
print("F1 score", f1_score(test_labels[:,i], log.predict(test_embeds)[:,i], average="micro"))
|
||||
for i in range(test_labels.shape[1]):
|
||||
print("Random baseline F1 score", f1_score(test_labels[:,i], dummy.predict(test_embeds)[:,i], average="micro"))
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = ArgumentParser("Run evaluation on PPI data.")
|
||||
@ -30,12 +41,14 @@ if __name__ == '__main__':
|
||||
|
||||
print("Loading data...")
|
||||
G = json_graph.node_link_graph(json.load(open(dataset_dir + "/ppi-G.json")))
|
||||
labels = json.load(open("/dfs/scratch0/graphnet/ppi/ppi-class_map.json"))
|
||||
labels = json.load(open(dataset_dir + "/ppi-class_map.json"))
|
||||
labels = {int(i):l for i, l in labels.iteritems()}
|
||||
|
||||
train_ids = [n for n in G.nodes() if not G.node[n]['val'] and not G.node[n]['test']]
|
||||
test_ids = [n for n in G.nodes() if G.node[n][setting]]
|
||||
train_labels = np.array([labels[i] for i in train_ids])
|
||||
if train_labels.ndim == 1:
|
||||
train_labels = np.expand_dims(train_labels, 1)
|
||||
test_labels = np.array([labels[i] for i in test_ids])
|
||||
print("running", data_dir)
|
||||
|
||||
@ -45,7 +58,7 @@ if __name__ == '__main__':
|
||||
## Logistic gets thrown off by big counts, so log transform num comments and score
|
||||
feats[:,0] = np.log(feats[:,0]+1.0)
|
||||
feats[:,1] = np.log(feats[:,1]-min(np.min(feats[:,1]), -1))
|
||||
feat_id_map = json.load(open("/dfs/scratch0/graphnet/ppi/ppi-id_map.json"))
|
||||
feat_id_map = json.load(open(dataset_dir + "/ppi-id_map.json"))
|
||||
feat_id_map = {int(id):val for id,val in feat_id_map.iteritems()}
|
||||
train_feats = feats[[feat_id_map[id] for id in train_ids]]
|
||||
test_feats = feats[[feat_id_map[id] for id in test_ids]]
|
||||
|
@ -130,6 +130,9 @@ class EdgeMinibatchIterator(object):
|
||||
batch_edges = self.train_edges[start : start + self.batch_size]
|
||||
return self.batch_feed_dict(batch_edges)
|
||||
|
||||
def num_training_batches(self):
|
||||
return len(self.train_edges) // self.batch_size + 1
|
||||
|
||||
def val_feed_dict(self, size=None):
|
||||
edge_list = self.val_edges
|
||||
if size is None:
|
||||
@ -292,6 +295,9 @@ class NodeMinibatchIterator(object):
|
||||
ret_val = self.batch_feed_dict(val_node_subset)
|
||||
return ret_val[0], ret_val[1], (iter_num+1)*size >= len(val_nodes), val_node_subset
|
||||
|
||||
def num_training_batches(self):
|
||||
return len(self.train_nodes) // self.batch_size + 1
|
||||
|
||||
def next_minibatch_feed_dict(self):
|
||||
start = self.batch_num * self.batch_size
|
||||
self.batch_num += 1
|
||||
|
@ -11,6 +11,7 @@ FLAGS = flags.FLAGS
|
||||
|
||||
class BipartiteEdgePredLayer(Layer):
|
||||
def __init__(self, input_dim1, input_dim2, placeholders, dropout=False, act=tf.nn.sigmoid,
|
||||
loss_fn='xent',
|
||||
bias=False, bilinear_weights=False, **kwargs):
|
||||
"""
|
||||
Basic class that applies skip-gram-like loss
|
||||
@ -26,6 +27,10 @@ class BipartiteEdgePredLayer(Layer):
|
||||
self.act = act
|
||||
self.bias = bias
|
||||
self.eps = 1e-7
|
||||
|
||||
# Margin for hinge loss
|
||||
self.margin = 0.1
|
||||
|
||||
self.bilinear_weights = bilinear_weights
|
||||
|
||||
if dropout:
|
||||
@ -49,6 +54,13 @@ class BipartiteEdgePredLayer(Layer):
|
||||
if self.bias:
|
||||
self.vars['bias'] = zeros([self.output_dim], name='bias')
|
||||
|
||||
if loss_fn == 'xent':
|
||||
self.loss_fn = self._xent_loss
|
||||
elif loss_fn == 'skipgram':
|
||||
self.loss_fn = self._skipgram_loss
|
||||
elif loss_fn == 'hinge':
|
||||
self.loss_fn = self._hinge_loss
|
||||
|
||||
if self.logging:
|
||||
self._log_vars()
|
||||
|
||||
@ -66,7 +78,7 @@ class BipartiteEdgePredLayer(Layer):
|
||||
result = tf.reduce_sum(inputs1 * inputs2, axis=1)
|
||||
return result
|
||||
|
||||
def neg_cost(self, inputs1, neg_samples):
|
||||
def neg_cost(self, inputs1, neg_samples, hard_neg_samples=None):
|
||||
""" For each input in batch, compute the sum of its affinity to negative samples.
|
||||
|
||||
Returns:
|
||||
@ -84,16 +96,32 @@ class BipartiteEdgePredLayer(Layer):
|
||||
neg_samples: tensor of shape [num_neg_samples x input_dim2]. Negative samples for all
|
||||
inputs in batch inputs1.
|
||||
"""
|
||||
return self.loss_fn(inputs1, inputs2, neg_samples)
|
||||
|
||||
def _xent_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None):
|
||||
aff = self.affinity(inputs1, inputs2)
|
||||
neg_aff = self.neg_cost(inputs1, neg_samples)
|
||||
neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples)
|
||||
true_xent = tf.nn.sigmoid_cross_entropy_with_logits(
|
||||
labels=tf.ones_like(aff), logits=aff)
|
||||
negative_xent = tf.nn.sigmoid_cross_entropy_with_logits(
|
||||
labels=tf.zeros_like(neg_aff), logits=neg_aff)
|
||||
loss = tf.reduce_sum(true_xent) + tf.reduce_sum(negative_xent)
|
||||
loss = tf.reduce_sum(true_xent) + 0.01*tf.reduce_sum(negative_xent)
|
||||
return loss
|
||||
|
||||
return loss
|
||||
def _skipgram_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None):
|
||||
aff = self.affinity(inputs1, inputs2)
|
||||
neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples)
|
||||
neg_cost = tf.log(tf.reduce_sum(tf.exp(neg_aff), axis=1))
|
||||
loss = tf.reduce_sum(aff - neg_cost)
|
||||
return loss
|
||||
|
||||
def _hinge_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None):
|
||||
aff = self.affinity(inputs1, inputs2)
|
||||
neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples)
|
||||
diff = tf.nn.relu(tf.subtract(neg_aff, tf.expand_dims(aff, 1) - self.margin), name='diff')
|
||||
loss = tf.reduce_sum(diff)
|
||||
self.neg_shape = tf.shape(neg_aff)
|
||||
return loss
|
||||
|
||||
def weights_norm(self):
|
||||
return tf.nn.l2_norm(self.vars['weights'])
|
||||
|
@ -87,4 +87,4 @@ if __name__ == "__main__":
|
||||
G = G.subgraph(nodes)
|
||||
pairs = run_random_walks(G, nodes)
|
||||
with open(out_file, "w") as fp:
|
||||
fp.write("\n".join([p[0] + "\t" + p[1] for p in pairs]))
|
||||
fp.write("\n".join([str(p[0]) + "\t" + str(p[1]) for p in pairs]))
|
||||
|
Loading…
Reference in New Issue
Block a user