Added mean pooling.

This commit is contained in:
williamleif 2017-10-10 15:46:12 -07:00
parent b142770576
commit 05c72baeb7
5 changed files with 130 additions and 19 deletions

View File

@ -116,12 +116,12 @@ class GCNAggregator(Layer):
return self.act(output)
class PoolingAggregator(Layer):
class MaxPoolingAggregator(Layer):
""" Aggregates via max-pooling over MLP functions.
"""
def __init__(self, input_dim, output_dim, model_size="small", neigh_input_dim=None,
dropout=0., bias=False, act=tf.nn.relu, name=None, concat=False, **kwargs):
super(PoolingAggregator, self).__init__(**kwargs)
super(MaxPoolingAggregator, self).__init__(**kwargs)
self.dropout = dropout
self.bias = bias
@ -194,12 +194,91 @@ class PoolingAggregator(Layer):
return self.act(output)
class TwoLayerPoolingAggregator(Layer):
class MeanPoolingAggregator(Layer):
""" Aggregates via mean-pooling over MLP functions.
"""
def __init__(self, input_dim, output_dim, model_size="small", neigh_input_dim=None,
dropout=0., bias=False, act=tf.nn.relu, name=None, concat=False, **kwargs):
super(MeanPoolingAggregator, self).__init__(**kwargs)
self.dropout = dropout
self.bias = bias
self.act = act
self.concat = concat
if neigh_input_dim is None:
neigh_input_dim = input_dim
if name is not None:
name = '/' + name
else:
name = ''
if model_size == "small":
hidden_dim = self.hidden_dim = 512
elif model_size == "big":
hidden_dim = self.hidden_dim = 1024
self.mlp_layers = []
self.mlp_layers.append(Dense(input_dim=neigh_input_dim,
output_dim=hidden_dim,
act=tf.nn.relu,
dropout=dropout,
sparse_inputs=False,
logging=self.logging))
with tf.variable_scope(self.name + name + '_vars'):
self.vars['neigh_weights'] = glorot([hidden_dim, output_dim],
name='neigh_weights')
self.vars['self_weights'] = glorot([input_dim, output_dim],
name='self_weights')
if self.bias:
self.vars['bias'] = zeros([self.output_dim], name='bias')
if self.logging:
self._log_vars()
self.input_dim = input_dim
self.output_dim = output_dim
self.neigh_input_dim = neigh_input_dim
def _call(self, inputs):
self_vecs, neigh_vecs = inputs
neigh_h = neigh_vecs
dims = tf.shape(neigh_h)
batch_size = dims[0]
num_neighbors = dims[1]
# [nodes * sampled neighbors] x [hidden_dim]
h_reshaped = tf.reshape(neigh_h, (batch_size * num_neighbors, self.neigh_input_dim))
for l in self.mlp_layers:
h_reshaped = l(h_reshaped)
neigh_h = tf.reshape(h_reshaped, (batch_size, num_neighbors, self.hidden_dim))
neigh_h = tf.reduce_mean(neigh_h, axis=1)
from_neighs = tf.matmul(neigh_h, self.vars['neigh_weights'])
from_self = tf.matmul(self_vecs, self.vars["self_weights"])
if not self.concat:
output = tf.add_n([from_self, from_neighs])
else:
output = tf.concat([from_self, from_neighs], axis=1)
# bias
if self.bias:
output += self.vars['bias']
return self.act(output)
class TwoMaxLayerPoolingAggregator(Layer):
""" Aggregates via pooling over two MLP functions.
"""
def __init__(self, input_dim, output_dim, model_size="small", neigh_input_dim=None,
dropout=0., bias=False, act=tf.nn.relu, name=None, concat=False, **kwargs):
super(TwoLayerPoolingAggregator, self).__init__(**kwargs)
super(TwoMaxLayerPoolingAggregator, self).__init__(**kwargs)
self.dropout = dropout
self.bias = bias

View File

@ -7,7 +7,7 @@ import graphsage.layers as layers
import graphsage.metrics as metrics
from .prediction import BipartiteEdgePredLayer
from .aggregators import MeanAggregator, PoolingAggregator, SeqAggregator, GCNAggregator, TwoLayerPoolingAggregator
from .aggregators import MeanAggregator, MaxPoolingAggregator, MeanPoolingAggregator, SeqAggregator, GCNAggregator
flags = tf.app.flags
FLAGS = flags.FLAGS
@ -212,10 +212,10 @@ class SampleAndAggregate(GeneralizedModel):
self.aggregator_cls = MeanAggregator
elif aggregator_type == "seq":
self.aggregator_cls = SeqAggregator
elif aggregator_type == "pool":
self.aggregator_cls = PoolingAggregator
elif aggregator_type == "pool_2":
self.aggregator_cls = TwoLayerPoolingAggregator
elif aggregator_type == "maxpool":
self.aggregator_cls = MaxPoolingAggregator
elif aggregator_type == "meanpool":
self.aggregator_cls = MeanPoolingAggregator
elif aggregator_type == "gcn":
self.aggregator_cls = GCNAggregator
else:

View File

@ -2,7 +2,7 @@ import tensorflow as tf
import graphsage.models as models
import graphsage.layers as layers
from graphsage.aggregators import MeanAggregator, PoolingAggregator, SeqAggregator, GCNAggregator, TwoLayerPoolingAggregator
from graphsage.aggregators import MeanAggregator, MaxPoolingAggregator, MeanPoolingAggregator, SeqAggregator, GCNAggregator
flags = tf.app.flags
FLAGS = flags.FLAGS
@ -35,10 +35,10 @@ class SupervisedGraphsage(models.SampleAndAggregate):
self.aggregator_cls = MeanAggregator
elif aggregator_type == "seq":
self.aggregator_cls = SeqAggregator
elif aggregator_type == "pool":
self.aggregator_cls = PoolingAggregator
elif aggregator_type == "pool_2":
self.aggregator_cls = TwoLayerPoolingAggregator
elif aggregator_type == "meanpool":
self.aggregator_cls = MeanPoolingAggregator
elif aggregator_type == "maxpool":
self.aggregator_cls = MaxPoolingAggregator
elif aggregator_type == "gcn":
self.aggregator_cls = GCNAggregator
else:

View File

@ -39,8 +39,8 @@ flags.DEFINE_float('dropout', 0.0, 'dropout rate (1 - keep probability).')
flags.DEFINE_float('weight_decay', 0.0, 'weight for l2 loss on embedding matrix.')
flags.DEFINE_integer('max_degree', 128, 'maximum node degree.')
flags.DEFINE_integer('samples_1', 25, 'number of samples in layer 1')
flags.DEFINE_integer('samples_2', 10, 'number of users samples in layer 2')
flags.DEFINE_integer('samples_3', 0, 'number of users samples in layer 3. (Only or mean model)')
flags.DEFINE_integer('samples_2', 10, 'number of samples in layer 2')
flags.DEFINE_integer('samples_3', 0, 'number of users samples in layer 3. (Only for mean model)')
flags.DEFINE_integer('dim_1', 128, 'Size of output dim (final is 2x this, if using concat)')
flags.DEFINE_integer('dim_2', 128, 'Size of output dim (final is 2x this, if using concat)')
flags.DEFINE_boolean('random_context', True, 'Whether to use random context or direct edges')
@ -202,7 +202,7 @@ def train(train_data, test_data=None):
identity_dim = FLAGS.identity_dim,
logging=True)
elif FLAGS.model == 'graphsage_pool':
elif FLAGS.model == 'graphsage_maxpool':
sampler = UniformNeighborSampler(adj_info)
layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1),
SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)]
@ -217,6 +217,23 @@ def train(train_data, test_data=None):
sigmoid_loss = FLAGS.sigmoid,
identity_dim = FLAGS.identity_dim,
logging=True)
elif FLAGS.model == 'graphsage_meanpool':
sampler = UniformNeighborSampler(adj_info)
layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1),
SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)]
model = SupervisedGraphsage(num_classes, placeholders,
features,
adj_info,
minibatch.deg,
layer_infos=layer_infos,
aggregator_type="meanpool",
model_size=FLAGS.model_size,
sigmoid_loss = FLAGS.sigmoid,
identity_dim = FLAGS.identity_dim,
logging=True)
else:
raise Exception('Error: model name unrecognized.')

View File

@ -194,7 +194,7 @@ def train(train_data, test_data=None):
model_size=FLAGS.model_size,
logging=True)
elif FLAGS.model == 'graphsage_pool':
elif FLAGS.model == 'graphsage_maxpool':
sampler = UniformNeighborSampler(adj_info)
layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1),
SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)]
@ -204,10 +204,25 @@ def train(train_data, test_data=None):
adj_info,
minibatch.deg,
layer_infos=layer_infos,
aggregator_type="pool",
aggregator_type="maxpool",
model_size=FLAGS.model_size,
identity_dim = FLAGS.identity_dim,
logging=True)
elif FLAGS.model == 'graphsage_meanpool':
sampler = UniformNeighborSampler(adj_info)
layer_infos = [SAGEInfo("node", sampler, FLAGS.samples_1, FLAGS.dim_1),
SAGEInfo("node", sampler, FLAGS.samples_2, FLAGS.dim_2)]
model = SampleAndAggregate(placeholders,
features,
adj_info,
minibatch.deg,
layer_infos=layer_infos,
aggregator_type="meanpool",
model_size=FLAGS.model_size,
identity_dim = FLAGS.identity_dim,
logging=True)
elif FLAGS.model == 'n2v':
model = Node2VecModel(placeholders, features.shape[0],
minibatch.deg,