2017-05-31 01:53:15 +08:00
|
|
|
from __future__ import print_function
|
|
|
|
import json
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from networkx.readwrite import json_graph
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
|
|
|
|
def run_regression(train_embeds, train_labels, test_embeds, test_labels):
|
|
|
|
np.random.seed(1)
|
|
|
|
from sklearn.linear_model import SGDClassifier
|
|
|
|
from sklearn.dummy import DummyClassifier
|
|
|
|
from sklearn.metrics import f1_score
|
|
|
|
from sklearn.multioutput import MultiOutputClassifier
|
2017-06-07 23:35:13 +08:00
|
|
|
dummy = MultiOutputClassifier(DummyClassifier())
|
2017-05-31 01:53:15 +08:00
|
|
|
dummy.fit(train_embeds, train_labels)
|
|
|
|
log = MultiOutputClassifier(SGDClassifier(loss="log"), n_jobs=10)
|
|
|
|
log.fit(train_embeds, train_labels)
|
|
|
|
print("F1 score", f1_score(test_labels, log.predict(test_embeds), average="micro"))
|
|
|
|
print("Random baseline F1 score", f1_score(test_labels, dummy.predict(test_embeds), average="micro"))
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = ArgumentParser("Run evaluation on PPI data.")
|
2017-06-07 23:35:13 +08:00
|
|
|
parser.add_argument("dataset_dir", help="Path to directory containing the dataset.")
|
|
|
|
parser.add_argument("data_dir", help="Path to directory containing the learned node embeddings. Set to 'feat' for raw features.")
|
|
|
|
parser.add_argument("setting", help="Either val or test.")
|
2017-05-31 01:53:15 +08:00
|
|
|
args = parser.parse_args()
|
|
|
|
dataset_dir = args.dataset_dir
|
|
|
|
data_dir = args.data_dir
|
|
|
|
setting = args.setting
|
|
|
|
|
|
|
|
print("Loading data...")
|
|
|
|
G = json_graph.node_link_graph(json.load(open(dataset_dir + "/ppi-G.json")))
|
|
|
|
labels = json.load(open("/dfs/scratch0/graphnet/ppi/ppi-class_map.json"))
|
|
|
|
labels = {int(i):l for i, l in labels.iteritems()}
|
|
|
|
|
|
|
|
train_ids = [n for n in G.nodes() if not G.node[n]['val'] and not G.node[n]['test']]
|
|
|
|
test_ids = [n for n in G.nodes() if G.node[n][setting]]
|
|
|
|
train_labels = np.array([labels[i] for i in train_ids])
|
|
|
|
test_labels = np.array([labels[i] for i in test_ids])
|
|
|
|
print("running", data_dir)
|
|
|
|
|
|
|
|
if data_dir == "feat":
|
|
|
|
print("Using only features..")
|
2017-06-07 23:35:13 +08:00
|
|
|
feats = np.load(dataset_dir + "/ppi-feats.npy")
|
|
|
|
## Logistic gets thrown off by big counts, so log transform num comments and score
|
2017-05-31 01:53:15 +08:00
|
|
|
feats[:,0] = np.log(feats[:,0]+1.0)
|
|
|
|
feats[:,1] = np.log(feats[:,1]-min(np.min(feats[:,1]), -1))
|
|
|
|
feat_id_map = json.load(open("/dfs/scratch0/graphnet/ppi/ppi-id_map.json"))
|
|
|
|
feat_id_map = {int(id):val for id,val in feat_id_map.iteritems()}
|
|
|
|
train_feats = feats[[feat_id_map[id] for id in train_ids]]
|
|
|
|
test_feats = feats[[feat_id_map[id] for id in test_ids]]
|
|
|
|
print("Running regression..")
|
|
|
|
from sklearn.preprocessing import StandardScaler
|
|
|
|
scaler = StandardScaler()
|
|
|
|
scaler.fit(train_feats)
|
|
|
|
train_feats = scaler.transform(train_feats)
|
|
|
|
test_feats = scaler.transform(test_feats)
|
|
|
|
run_regression(train_feats, train_labels, test_feats, test_labels)
|
|
|
|
else:
|
|
|
|
embeds = np.load(data_dir + "/val.npy")
|
|
|
|
id_map = {}
|
|
|
|
with open(data_dir + "/val.txt") as fp:
|
|
|
|
for i, line in enumerate(fp):
|
|
|
|
id_map[int(line.strip())] = i
|
|
|
|
train_embeds = embeds[[id_map[id] for id in train_ids]]
|
|
|
|
test_embeds = embeds[[id_map[id] for id in test_ids]]
|
|
|
|
|
|
|
|
print("Running regression..")
|
|
|
|
run_regression(train_embeds, train_labels, test_embeds, test_labels)
|