2017-05-29 23:35:30 +08:00
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
2017-05-31 21:39:04 +08:00
|
|
|
from graphsage.inits import zeros
|
2017-05-29 23:35:30 +08:00
|
|
|
from graphsage.layers import Layer
|
|
|
|
import tensorflow as tf
|
|
|
|
|
|
|
|
flags = tf.app.flags
|
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
|
|
|
|
|
|
|
|
class BipartiteEdgePredLayer(Layer):
|
|
|
|
def __init__(self, input_dim1, input_dim2, placeholders, dropout=False, act=tf.nn.sigmoid,
|
2017-11-04 02:43:57 +08:00
|
|
|
loss_fn='xent', neg_sample_weights=1.0,
|
2017-05-29 23:35:30 +08:00
|
|
|
bias=False, bilinear_weights=False, **kwargs):
|
|
|
|
"""
|
2017-05-31 21:39:04 +08:00
|
|
|
Basic class that applies skip-gram-like loss
|
|
|
|
(i.e., dot product of node+target and node and negative samples)
|
2017-05-29 23:35:30 +08:00
|
|
|
Args:
|
|
|
|
bilinear_weights: use a bilinear weight for affinity calculation: u^T A v. If set to
|
|
|
|
false, it is assumed that input dimensions are the same and the affinity will be
|
|
|
|
based on dot product.
|
|
|
|
"""
|
|
|
|
super(BipartiteEdgePredLayer, self).__init__(**kwargs)
|
|
|
|
self.input_dim1 = input_dim1
|
|
|
|
self.input_dim2 = input_dim2
|
|
|
|
self.act = act
|
|
|
|
self.bias = bias
|
|
|
|
self.eps = 1e-7
|
2017-10-14 05:50:36 +08:00
|
|
|
|
|
|
|
# Margin for hinge loss
|
|
|
|
self.margin = 0.1
|
2017-11-04 02:43:57 +08:00
|
|
|
self.neg_sample_weights = neg_sample_weights
|
2017-10-14 05:50:36 +08:00
|
|
|
|
2017-05-29 23:35:30 +08:00
|
|
|
self.bilinear_weights = bilinear_weights
|
|
|
|
|
|
|
|
if dropout:
|
|
|
|
self.dropout = placeholders['dropout']
|
|
|
|
else:
|
|
|
|
self.dropout = 0.
|
|
|
|
|
|
|
|
# output a likelihood term
|
|
|
|
self.output_dim = 1
|
|
|
|
with tf.variable_scope(self.name + '_vars'):
|
|
|
|
# bilinear form
|
|
|
|
if bilinear_weights:
|
|
|
|
#self.vars['weights'] = glorot([input_dim1, input_dim2],
|
|
|
|
# name='pred_weights')
|
|
|
|
self.vars['weights'] = tf.get_variable(
|
|
|
|
'pred_weights',
|
|
|
|
shape=(input_dim1, input_dim2),
|
|
|
|
dtype=tf.float32,
|
|
|
|
initializer=tf.contrib.layers.xavier_initializer())
|
|
|
|
|
|
|
|
if self.bias:
|
|
|
|
self.vars['bias'] = zeros([self.output_dim], name='bias')
|
|
|
|
|
2017-10-14 05:50:36 +08:00
|
|
|
if loss_fn == 'xent':
|
|
|
|
self.loss_fn = self._xent_loss
|
|
|
|
elif loss_fn == 'skipgram':
|
|
|
|
self.loss_fn = self._skipgram_loss
|
|
|
|
elif loss_fn == 'hinge':
|
|
|
|
self.loss_fn = self._hinge_loss
|
|
|
|
|
2017-05-29 23:35:30 +08:00
|
|
|
if self.logging:
|
|
|
|
self._log_vars()
|
|
|
|
|
|
|
|
def affinity(self, inputs1, inputs2):
|
|
|
|
""" Affinity score between batch of inputs1 and inputs2.
|
|
|
|
Args:
|
|
|
|
inputs1: tensor of shape [batch_size x feature_size].
|
|
|
|
"""
|
|
|
|
# shape: [batch_size, input_dim1]
|
|
|
|
if self.bilinear_weights:
|
|
|
|
prod = tf.matmul(inputs2, tf.transpose(self.vars['weights']))
|
|
|
|
self.prod = prod
|
|
|
|
result = tf.reduce_sum(inputs1 * prod, axis=1)
|
|
|
|
else:
|
|
|
|
result = tf.reduce_sum(inputs1 * inputs2, axis=1)
|
|
|
|
return result
|
|
|
|
|
2017-10-14 05:50:36 +08:00
|
|
|
def neg_cost(self, inputs1, neg_samples, hard_neg_samples=None):
|
2017-05-29 23:35:30 +08:00
|
|
|
""" For each input in batch, compute the sum of its affinity to negative samples.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor of shape [batch_size x num_neg_samples]. For each node, a list of affinities to
|
|
|
|
negative samples is computed.
|
|
|
|
"""
|
|
|
|
if self.bilinear_weights:
|
|
|
|
inputs1 = tf.matmul(inputs1, self.vars['weights'])
|
|
|
|
neg_aff = tf.matmul(inputs1, tf.transpose(neg_samples))
|
|
|
|
return neg_aff
|
|
|
|
|
|
|
|
def loss(self, inputs1, inputs2, neg_samples):
|
|
|
|
""" negative sampling loss.
|
|
|
|
Args:
|
|
|
|
neg_samples: tensor of shape [num_neg_samples x input_dim2]. Negative samples for all
|
|
|
|
inputs in batch inputs1.
|
|
|
|
"""
|
2017-10-14 05:50:36 +08:00
|
|
|
return self.loss_fn(inputs1, inputs2, neg_samples)
|
2017-05-29 23:35:30 +08:00
|
|
|
|
2017-10-14 05:50:36 +08:00
|
|
|
def _xent_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None):
|
2017-05-29 23:35:30 +08:00
|
|
|
aff = self.affinity(inputs1, inputs2)
|
2017-10-14 05:50:36 +08:00
|
|
|
neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples)
|
2017-05-29 23:35:30 +08:00
|
|
|
true_xent = tf.nn.sigmoid_cross_entropy_with_logits(
|
|
|
|
labels=tf.ones_like(aff), logits=aff)
|
|
|
|
negative_xent = tf.nn.sigmoid_cross_entropy_with_logits(
|
|
|
|
labels=tf.zeros_like(neg_aff), logits=neg_aff)
|
2017-11-04 02:43:57 +08:00
|
|
|
loss = tf.reduce_sum(true_xent) + self.neg_sample_weights * tf.reduce_sum(negative_xent)
|
2017-10-14 05:50:36 +08:00
|
|
|
return loss
|
2017-05-29 23:35:30 +08:00
|
|
|
|
2017-10-14 05:50:36 +08:00
|
|
|
def _skipgram_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None):
|
|
|
|
aff = self.affinity(inputs1, inputs2)
|
|
|
|
neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples)
|
|
|
|
neg_cost = tf.log(tf.reduce_sum(tf.exp(neg_aff), axis=1))
|
|
|
|
loss = tf.reduce_sum(aff - neg_cost)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
def _hinge_loss(self, inputs1, inputs2, neg_samples, hard_neg_samples=None):
|
|
|
|
aff = self.affinity(inputs1, inputs2)
|
|
|
|
neg_aff = self.neg_cost(inputs1, neg_samples, hard_neg_samples)
|
|
|
|
diff = tf.nn.relu(tf.subtract(neg_aff, tf.expand_dims(aff, 1) - self.margin), name='diff')
|
|
|
|
loss = tf.reduce_sum(diff)
|
|
|
|
self.neg_shape = tf.shape(neg_aff)
|
|
|
|
return loss
|
2017-05-29 23:35:30 +08:00
|
|
|
|
|
|
|
def weights_norm(self):
|
|
|
|
return tf.nn.l2_norm(self.vars['weights'])
|