graphsage-tf/eval_scripts/citation_eval.py

104 lines
4.4 KiB
Python
Raw Permalink Normal View History

2017-05-31 01:53:15 +08:00
from __future__ import print_function
import json
import numpy as np
from networkx.readwrite import json_graph
from argparse import ArgumentParser
def get_class_labels(ids):
subjs = ["CU", "DA", "DR", "NI", "GU", "IA"]
class_map = {}
for i, code in enumerate(subjs):
with open("/dfs/scratch0/scisurv/clean/{}.tsv".format(code)) as fp:
fp.readline()
for line in fp:
class_map[int(line.split()[0])] = i
classes = [class_map[i] for i in ids]
return classes
def run_regression(train_embeds, train_labels, test_embeds, test_labels):
np.random.seed(1)
from sklearn.linear_model import SGDClassifier
from sklearn.dummy import DummyClassifier
from sklearn.metrics import f1_score
dummy = DummyClassifier()
dummy.fit(train_embeds, train_labels)
log = SGDClassifier(loss="log", n_jobs=10)
log.fit(train_embeds, train_labels)
print("F1 score:", f1_score(test_labels, log.predict(test_embeds), average="micro"))
print("Random baseline f1 score:", f1_score(test_labels, dummy.predict(test_embeds), average="micro"))
if __name__ == '__main__':
parser = ArgumentParser("Run evaluation on citation data.")
parser.add_argument("dataset_dir", help="Path to directory containing the dataset.")
2017-10-13 05:15:21 +08:00
parser.add_argument("embed_dir", help="Path to directory containing the learned node embeddings.")
parser.add_argument("setting", help="Either val or test.")
2017-05-31 01:53:15 +08:00
args = parser.parse_args()
dataset_dir = args.dataset_dir
2017-10-13 05:15:21 +08:00
data_dir = args.embed_dir
2017-05-31 01:53:15 +08:00
setting = args.setting
print("Loading data...")
G = json_graph.node_link_graph(json.load(open(dataset_dir + "/isi-G.json")))
train_ids = [n for n in G.nodes() if not G.node[n]['val'] and not G.node[n]['test']]
test_ids = [n for n in G.nodes() if G.node[n][setting]]
test_labels = get_class_labels(test_ids)
train_labels = get_class_labels(train_ids)
if data_dir == "feat":
print("Using only features..")
feats = np.load(dataset_dir + "/isi-feats.npy")
feat_id_map = json.load(open(dataset_dir + "/isi-id_map.json"))
feat_id_map = {int(id):val for id,val in feat_id_map.iteritems()}
train_feats = feats[[feat_id_map[id] for id in train_ids]]
test_feats = feats[[feat_id_map[id] for id in test_ids]]
print("Running regression..")
run_regression(train_feats, train_labels, test_feats, test_labels)
elif "n2v" in data_dir:
print("Using n2v vectors.")
base_embeds = np.load(data_dir + "/val.npy")
base_id_map = {}
with open(data_dir + "/val.txt") as fp:
for i, line in enumerate(fp):
base_id_map[int(line.strip())] = i
tuned_embeds = np.load(data_dir + "/val-test.npy")
tuned_id_map = {}
with open(data_dir + "/val-test.txt") as fp:
for i, line in enumerate(fp):
tuned_id_map[int(line.strip())] = i
train_embeds = base_embeds[[base_id_map[id] for id in train_ids]]
test_embeds = tuned_embeds[[tuned_id_map[id] for id in test_ids]]
print("Running regression..")
run_regression(train_embeds, train_labels, test_embeds, test_labels)
# loading feats
feats = np.load(dataset_dir + "/isi-feats.npy")
feat_id_map = json.load(open(dataset_dir + "/isi-id_map.json"))
feat_id_map = {int(id):val for id,val in feat_id_map.iteritems()}
train_feats = feats[[feat_id_map[id] for id in train_ids]]
test_feats = feats[[feat_id_map[id] for id in test_ids]]
train_embeds = np.hstack([train_feats, train_embeds])
test_embeds = np.hstack([test_feats, test_embeds])
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(train_embeds)
train_embeds = scaler.transform(train_embeds)
test_embeds = scaler.transform(test_embeds)
print("Running regression with feats..")
run_regression(train_embeds, train_labels, test_embeds, test_labels)
else:
embeds = np.load(data_dir + "/val.npy")
id_map = {}
with open(data_dir + "/val.txt") as fp:
for i, line in enumerate(fp):
id_map[int(line.strip())] = i
train_embeds = embeds[[id_map[id] for id in train_ids]]
test_embeds = embeds[[id_map[id] for id in test_ids]]
print("Running regression..")
run_regression(train_embeds, train_labels, test_embeds, test_labels)