asm_to_csv/OpcodeGet.py
2024-03-13 15:09:12 +08:00

122 lines
4.6 KiB
Python

import concurrent.futures
import os
import re
from log_utils import setup_logger
from tqdm import tqdm
import r2pipe
import pandas as pd
csv_lock = 0
def Opcode_to_csv(opcode_list, file_type):
csv_write(f'output_{file_type}.csv', opcode_list)
logger.info(f"done {done_file_num} files")
def csv_write(file_name, data: list):
"""write data to csv"""
logger.info("*======================start write==================================*")
df = pd.DataFrame(data)
chunksize = 1000
for i in range(0, len(df), chunksize):
df.iloc[i:i + chunksize].to_csv(f'./out/{file_name}', mode='a', header=False, index=False)
logger.info(f"done rows {len(df)}")
logger.info("*=================write to csv success==============================*")
return True
def extract_opcode(disasm_text):
"""
从反汇编文本中提取操作码和操作数
正则表达式用于匹配操作码和操作数,考虑到操作数可能包含空格和逗号
"""
match = re.search(r"^\s*(\S+)(?:\s+(.*))?$", disasm_text)
if match:
opcode = match.group(1)
# operands_str = match.group(2) if match.group(2) is not None else ""
# split_pattern = re.compile(r",(?![^\[]*\])") # 用于切分操作数的正则表达式
# operands = split_pattern.split(operands_str)
# return opcode, [op.strip() for op in operands if op.strip()]
return opcode
return ""
def get_graph_r2pipe(file_type, file_name):
# 获取基础块内的操作码序列
r2pipe_open = r2pipe.open(os.path.join(file_path, file_name), flags=['-2'])
opcode_Sequence = []
try:
# 获取函数列表
r2pipe_open.cmd("aaa")
r2pipe_open.cmd('e arch=x86')
function_list = r2pipe_open.cmdj("aflj")
for function in function_list:
# 外部函数测试
# if function['name'] == 'sub.TNe_U':
# print(function)
# block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
# for block in block_list:
# # print(block)
# # 获取基本块的反汇编指令
# disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
# if disasm:
# for op in disasm:
# print(extract_opcode(op["opcode"]))
block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
block_opcode_Sequence = []
for block in block_list:
# print(block)
# 获取基本块的反汇编指令
disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
if disasm:
for op in disasm:
if op["type"] == "invalid" or op["opcode"] == "invalid":
continue
block_opcode_Sequence.append(extract_opcode(op["opcode"]))
opcode_Sequence.append(
[file_type, file_type, len(block_opcode_Sequence), ' '.join(block_opcode_Sequence)])
except Exception as e:
logger.error(f"Error: get function list failed in {file_name}")
print(f"Error: get function list failed in {file_name} ,error info {e}")
r2pipe_open.quit()
return opcode_Sequence
if __name__ == '__main__':
file_type = 'malware'
logger = setup_logger('logger', f'./log/opcode_{file_type}.log')
file_path = os.path.join('/mnt/d/bishe/dataset/sample_20230130_458')
print(f"max works {os.cpu_count()}")
file_list = os.listdir(file_path)[:10000]
done_file_num = 0
done_list = [['class', 'sub-class', 'size', 'corpus']]
process_bar = tqdm(desc=f'Processing {file_type}...', leave=True, total=len(file_list))
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor: # 调整线程池大小
future_to_args = {
executor.submit(get_graph_r2pipe, file_type, file_name): file_name for file_name in file_list
}
for future in concurrent.futures.as_completed(future_to_args):
try:
tmp = future.result()
done_list.extend(tmp if len(tmp) > 0 else [])
if len(done_list) > 100000:
csv_write(f'output_{file_type}.csv', done_list)
done_file_num += 1
done_list.clear()
except Exception as e:
logger.error(f"Error: {e}")
print(f"Error: {e}")
finally:
process_bar.update(1)
else:
csv_write(f'output_{file_type}.csv', done_list)