asm_to_csv/json_feature2json.py

131 lines
5.8 KiB
Python

import concurrent.futures
import os
from my_utils import save_json, load_json, setup_logger
from bert.obtain_inst_vec import bb2vec
import multiprocessing
from tqdm import tqdm
import warnings
from datetime import datetime
warnings.filterwarnings("ignore")
def addr2vec(base_file_path, index):
# 从路径拆分文件名与路径
file_name = str(os.path.basename(base_file_path))
file_path = str(os.path.dirname(base_file_path))
# 如果不是路径则开始转化
if file_name:
# 无操作码标志位
none_opcode_flag = False
# 忽略已生成的文件
if os.path.exists(os.path.join(file_path, 'final', file_name)):
return
file_json = load_json(base_file_path)
# 确保存在基础文件而不存在特征文件的情况
feature_json = load_json(os.path.join(file_path, 'feature', file_name)) if os.path.exists(
os.path.join(file_path, 'feature', file_name)) else None
if feature_json is not None:
# 如果出现无操作码的情况,直接跳过文件
for item in feature_json:
if len(item['opcode']) == 0:
logger.error(f"基础块无操作码 {file_name},地址{item['addr']}")
none_opcode_flag = True
if none_opcode_flag:
return
# 对于长度过长的文件先不处理
# if len(feature_json) > 10000:
# data = {
# 'file_name': file_name,
# 'feature_len': len(feature_json)
# }
# continuation_json(os.path.join(f'./out/json/too_long_{sample_type}.json'), data)
# return
# 多线程预测bert
feature_set = {}
with multiprocessing.Pool(processes=2) as pool:
try:
results = list(tqdm(pool.imap_unordered(bb2vec, [item for item in feature_json]),
total=len(feature_json),
desc=f'{file_name} Progress:{index}/{json_files_len} ',
ascii=True,
leave=False,
dynamic_ncols=True,
position=1))
for result in results:
if result[0]:
feature_set[result[1]] = result[2]
else:
logger.error(f"bert解析出错 {file_name},地址{result[1]},操作码{result[2]},报错{result[3]}")
return
except Exception as e:
logger.error(f"多线程解析出错:{file_name},报错{e}")
return
# debug
# try:
# for index, feature in tqdm(enumerate(feature_json), total=len(feature_json)):
# addr, feature = bb2vec(feature)
# feature_set[addr] = feature
# except Exception as e:
# print(index)
# print(e)
# print(feature['opcode'])
try:
for item in file_json['acfg_list']:
bb_feature_addr_list = item['block_features']
item['block_features'] = [feature_set[key] for key in bb_feature_addr_list]
except Exception as e:
logger.error(f"地址对应出错{file_name}, {e}")
return
save_json(os.path.join(file_path, 'final', file_name), file_json)
else:
logger.error(f'文件{file_name}不存在特征文件')
return
if __name__ == '__main__':
logger = setup_logger('feature2json', './log/feature2json.log', reset=True)
sample_type = 'benign'
# json_path = os.path.join(f'./out/json/{sample_type}')
json_path = os.path.join(f'./out/json/{sample_type}')
json_files = os.listdir(json_path)
# json_files = ['1710ae16c54ac149f353ba58e752ba7069f88326e6b71107598283bd0fffcbd6.jsonl']
json_files = sorted(json_files, key=lambda x: x[0])
json_files_len = len(json_files)
now = datetime.now()
formatted_now = now.strftime("%Y-%m-%d %H:%M:%S")
print("start time:", formatted_now)
# with multiprocessing.Pool(processes=os.cpu_count()) as pool:
# result = list(tqdm(pool.imap_unordered(addr2vec, [os.path.join(json_path, file) for file in json_files[:1] if os.path.isfile(os.path.join(json_path, file))]),
# total=len(json_files)))
# multi_thread_order(addr2vec, [os.path.join(json_path, file) for file in json_files if
# os.path.isfile(os.path.join(json_path, file))], thread_num=THREAD_FULL)
# with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
# tqdm_position = 1
# try:
# future_args = {
# executor.submit(addr2vec, os.path.join(json_path, file), index, tqdm_position)
# for index, file in enumerate(json_files)
# }
# for future in tqdm(concurrent.futures.as_completed(future_args),
# total=len(json_files),
# desc='Total:',
# position=0
# ):
# tqdm_position += 1
# except Exception as e:
# print(e)
for index, json_file in tqdm(enumerate(json_files[::-1]),
total=len(json_files),
ascii=True,
desc='Total:',
position=0,
maxinterval=1):
if os.path.isfile(os.path.join(json_path, json_file)):
addr2vec(os.path.join(json_path, json_file), index)