Compare commits

..

2 Commits

Author SHA1 Message Date
9379fc80d6 exe提取除block内特征 2024-03-19 16:25:25 +08:00
61233e920a 外部函数提取 2024-03-15 12:57:59 +08:00
4 changed files with 259 additions and 22 deletions

196
exe2json.py Normal file
View File

@ -0,0 +1,196 @@
import os
import r2pipe
import re
import hashlib
import log_utils
import json
def calc_sha256(file_path):
with open(file_path, 'rb') as f:
bytes = f.read()
sha256obj = hashlib.sha256(bytes)
sha256 = sha256obj.hexdigest()
return sha256
def extract_opcode(disasm_text):
"""
从反汇编文本中提取操作码和操作数
正则表达式用于匹配操作码和操作数考虑到操作数可能包含空格和逗号
"""
match = re.search(r"^\s*(\S+)(?:\s+(.*))?$", disasm_text)
if match:
opcode = match.group(1)
# operands_str = match.group(2) if match.group(2) is not None else ""
# split_pattern = re.compile(r",(?![^\[]*\])") # 用于切分操作数的正则表达式
# operands = split_pattern.split(operands_str)
# return opcode, [op.strip() for op in operands if op.strip()]
return opcode
return ""
def get_graph_cfg_r2pipe(r2pipe_open):
# CFG提取
acfg_item = []
try:
# 获取函数列表
function_list = r2pipe_open.cmdj("aflj")
for function in function_list:
# 局部函数内的特征提取
node_list = []
edge_list = []
temp_edge_list = []
block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
block_number = len(block_list)
block_feature_list = []
for block in block_list:
node_list.append(block["addr"])
# 获取基本块的反汇编指令
disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
if disasm:
for op in disasm:
if op["type"] == "invalid":
continue
# TODO :这里需要处理指令的特征提取
block_feature = ''
block_feature_list.append(block_feature)
# 处理跳转指令
if "jump" in op and op["jump"] != 0:
temp_edge_list.append([block["addr"], op["jump"]])
for temp_edge in temp_edge_list:
if temp_edge[1] in node_list:
edge_list.append(temp_edge)
acfg = {
'block_number': block_number,
'block_edges': [[d[0] for d in edge_list], [d[1] for d in edge_list]],
'block_features': block_feature_list
}
acfg_item.append(acfg)
return True, "二进制可执行文件解析成功", acfg_item
except Exception as e:
return False, e, None
# for block in block_list:
# node_list.append(block["addr"])
#
# # 获取基本块的反汇编指令
# disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
# node_info = []
# if disasm:
# for op in disasm:
# if op["type"] == "invalid":
# continue
# opcode, operands = extract_opcode(op["disasm"])
# # 处理跳转指令
# if "jump" in op and op["jump"] != 0:
# temp_edge_list.append([block["addr"], op["jump"]])
# node_info.append([op["offset"], op["bytes"], opcode, op["jump"]])
# else:
# node_info.append([op["offset"], op["bytes"], opcode, None])
# node_info_list.append(node_info)
# 完成 CFG 构建后, 检查并清理不存在的出边
# 获取排序后元素的原始索引
# sorted_indices = [i for i, v in sorted(enumerate(node_list), key=lambda x: x[1])]
# # 根据这些索引重新排列
# node_list = [node_list[i] for i in sorted_indices]
# node_info_list = [node_info_list[i] for i in sorted_indices]
#
# return True, "二进制可执行文件解析成功", node_list, edge_list, node_info_list
# except Exception as e:
# return False, e, None, None, None
def get_graph_fcg_r2pipe(r2pipe_open):
# FCG提取
try:
function_list = r2pipe_open.cmdj("aflj")
node_list = []
func_name_list = []
edge_list = []
temp_edge_list = []
function_num = len(function_list)
for function in function_list:
func_name_list.append(function["name"])
r2pipe_open.cmd(f's ' + str(function["offset"]))
pdf = r2pipe_open.cmdj('pdfj')
if pdf is None:
continue
node_bytes = ""
node_opcode = ""
for op in pdf["ops"]:
if op["type"] == "invalid":
continue
node_bytes += op["bytes"]
opcode = extract_opcode(op["disasm"])
node_opcode += opcode + " "
if "jump" in op and op["jump"] != 0:
temp_edge_list.append([function["offset"], op["jump"]])
node_list.append(function["offset"])
# 完成 FCG 构建后, 检查并清理不存在的出边
for temp_edge in temp_edge_list:
if temp_edge[1] in node_list:
edge_list.append(temp_edge)
sub_function_name_list = ('fcn.', 'loc.', 'main', 'entry')
func_name_list = [func_name for func_name in func_name_list if not func_name.startswith(sub_function_name_list)]
return True, "二进制可执行文件解析成功", function_num, edge_list, func_name_list
except Exception as e:
return False, e, None, None, None
def get_r2pipe(file_path):
try:
r2 = r2pipe.open(file_path, flags=['-2'])
r2.cmd("aaa")
r2.cmd('e arch=x86')
return r2
except Exception as e:
return None
def init_logging():
log_file = "./out/exe2json.log"
logging = log_utils.setup_logger('exe2json', log_file)
return logging
def exe_to_json(file_path, output_path):
logging = init_logging()
r2 = get_r2pipe(file_path)
fcg_Operation_flag, fcg_Operation_message, function_num, function_fcg_edge_list, function_names = get_graph_fcg_r2pipe(r2)
cfg_Operation_flag, cfg_Operation_message, cfg_item = get_graph_cfg_r2pipe(r2)
file_fingerprint = calc_sha256(file_path)
if fcg_Operation_flag and cfg_Operation_flag:
json_obj = {
'hash': file_fingerprint,
'function_number': function_num,
'function_edges': [[int(d[0]) for d in function_fcg_edge_list],
[int(d[1]) for d in function_fcg_edge_list]],
'acfg_list': cfg_item,
'function_names': function_names
}
else:
logging.error(f"二进制可执行文件解析失败 文件地址{file_path}")
if not fcg_Operation_flag:
logging.error(f"fcg错误{fcg_Operation_message}")
if not cfg_Operation_flag:
logging.error(f"cfg错误{cfg_Operation_message}")
return False
r2.quit()
result = json.dumps(json_obj,ensure_ascii=False)
with open(os.path.join(output_path, file_fingerprint + '.jsonl'), 'w') as out:
out.write(result)
out.close()
return True
if __name__ == '__main__':
test_file_path = '/mnt/d/bishe/exe2json/sample/VirusShare_0a3b625380161cf92c4bb10135326bb5'
exe_to_json(test_file_path, './out/json')

View File

@ -2,35 +2,55 @@ import concurrent.futures
import os import os
import r2pipe import r2pipe
from tqdm import tqdm from tqdm import tqdm
import pandas as pd
def get_fun_name_list(file_path): def get_fun_name_list(file_path):
# 读取csv文件 # 读取csv文件
r2 = r2pipe.open(os.path.join(file_path), flags=['-2'])
r2.cmd('aaa')
r2.cmd('e arch=x86')
function_list = r2.cmdj("aflj")
fun_name_list = [] fun_name_list = []
for function in function_list: try:
fun_name_list.append(function['name']) r2 = r2pipe.open(os.path.join(file_path), flags=['-2'])
r2.cmd('aaa')
r2.cmd('e arch=x86')
function_list = r2.cmdj("aflj")
for function in function_list:
fun_name_list.append(function['name'])
except Exception as err:
print(f'error at {file_path} , {err}')
r2.quit() r2.quit()
return fun_name_list return fun_name_list
def fun_name_count():
if __name__ == '__main__':
file_path = os.path.join('/mnt/d/bishe/dataset/sample_20230130_458') file_path = os.path.join('/mnt/d/bishe/dataset/sample_20230130_458')
file_list = os.listdir(file_path) bengin_file_path = os.path.join('/mnt/d/bishe/dataset/train_benign')
file_list = [os.path.join(file_path, file_name) for file_name in os.listdir(file_path)]
file_list.extend([os.path.join(bengin_file_path, file_name) for file_name in os.listdir(bengin_file_path)])
fun_name_set = {} fun_name_set = {}
with concurrent.futures.ThreadPoolExecutor(max_workers=6) as executor: with concurrent.futures.ThreadPoolExecutor(max_workers=12) as executor:
future_to_args = { future_to_args = {
executor.submit(get_fun_name_list, os.path.join(file_path, file_name)): file_name executor.submit(get_fun_name_list, file_name): file_name
for file_name in file_list for file_name in file_list
} }
for future in tqdm(concurrent.futures.as_completed(future_to_args), total=len(future_to_args)): for future in tqdm(concurrent.futures.as_completed(future_to_args), total=len(future_to_args)):
fun_name_list = future.result() fun_name_list = future.result()
for fun_name in fun_name_list: if fun_name_list:
if fun_name not in fun_name_set: for fun_name in fun_name_list:
fun_name_set[fun_name] = 1 if fun_name not in fun_name_set:
else: fun_name_set[fun_name] = 1
fun_name_set[fun_name] += 1 else:
print(fun_name_set) fun_name_set[fun_name] += 1
pd.DataFrame(fun_name_set.items(), columns=['fun_name', 'count']).to_csv('./out/fun_name.csv', index=False, mode='a')
def fun_name_sort():
fun_name_df = pd.read_csv('./out/fun_name.csv')
# 去除fun_name中fun_name列中的局部函数
for item in ['fcn.', 'loc.', 'main', 'entr']:
fun_name_df = fun_name_df[fun_name_df['fun_name'].apply(lambda x: item not in x and item not in x)]
fun_name_df = fun_name_df.sort_values(by='count', ascending=False)[:10000]
fun_name_df.to_csv('fun_name_sort.csv', index=False)
if __name__ == '__main__':
fun_name_count()
fun_name_sort()

View File

@ -102,9 +102,8 @@ def process_csv_file(csvfile, ngram_type, file_percent_filter, frequency_filter)
idx + 1, file_percent_filter, frequency_filter): start for start in idx + 1, file_percent_filter, frequency_filter): start for start in
range(0, len(dataframe['corpus'].values), 10000) range(0, len(dataframe['corpus'].values), 10000)
} }
for future in tqdm(concurrent.futures.as_completed(future_to_args), total=len(future_to_args),
desc=f'Computing {ngram_type}-gram on files'):
for future in concurrent.futures.as_completed(future_to_args):
try: try:
sub_ngram_list, sub_filtered_ngram_list = future.result() sub_ngram_list, sub_filtered_ngram_list = future.result()
for i in [sub_ngram_list, ngram_list]: for i in [sub_ngram_list, ngram_list]:
@ -113,10 +112,11 @@ def process_csv_file(csvfile, ngram_type, file_percent_filter, frequency_filter)
for i in [sub_filtered_ngram_list, filtered_ngram_list]: for i in [sub_filtered_ngram_list, filtered_ngram_list]:
for key, value in i.items(): for key, value in i.items():
filtered_ngram_list[key] += value filtered_ngram_list[key] += value
process_bar.update(10000) # 手动更新进度条
except Exception as exc: except Exception as exc:
logging.error(f"Error processing {idx + 1}-gram: {exc}") logging.error(f"Error processing {idx + 1}-gram: {exc}")
return ngram_list, filtered_ngram_list return ngram_list, filtered_ngram_list
# -------------------------------------------------------------------------------------------------- # --------------------------------------------------------------------------------------------------
# Execution starts here # Execution starts here

21
ngramSort.py Normal file
View File

@ -0,0 +1,21 @@
import pandas as pd
def extract_features(file_path):
# 读取csv文件
df = pd.read_csv(file_path, delimiter=',')
# 按第2列数值降序排序
df["count"] = pd.to_numeric(df["count"], errors='coerce')
df_sorted = df.sort_values(by='count', ascending=True)
# 筛选出第2列值大于10000的行并提取第1列内容
features = df_sorted[df_sorted['count'] <0]
return features
if __name__ == '__main__':
# 使用函数传入csv文件路径
features = extract_features('./out/3gram.csv')
print(features)