完整版

This commit is contained in:
huihun 2024-04-15 20:01:20 +08:00
parent 9379fc80d6
commit adb6acc3cf
7 changed files with 2735 additions and 83 deletions

24
bert/bert.json Normal file
View File

@ -0,0 +1,24 @@
{
"architectures": [
"BertForPreTraining"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 16,
"initializer_range": 0.02,
"intermediate_size": 64,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 50,
"model_type": "bert",
"num_attention_heads": 8,
"num_hidden_layers": 4,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"torch_dtype": "float32",
"transformers_version": "4.30.2",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 2000
}

269
bert/my_data_collator.py Normal file
View File

@ -0,0 +1,269 @@
from dataclasses import dataclass
from typing import (TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional,
Sequence, Tuple, Union)
import numpy as np
import tokenizers
import torch
from transformers import BatchEncoding
EncodedInput = List[int]
@dataclass
class MyDataCollatorForPreTraining:
tokenizer: tokenizers.Tokenizer
mlm: bool = True
mlm_probability: float = 0.15
pad_to_multiple_of: Optional[int] = None
def __post_init__(self):
# print(self.mlm, self.tokenzier.token_to_id("[MASK]"))
# input()
if self.mlm and self.tokenizer.token_to_id("[MASK]") is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
"You should pass `mlm=False` to train on causal language modeling instead."
)
def __call__(
self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]],
) -> Dict[str, torch.Tensor]:
# print(examples)
# Handle dict or lists with proper padding and conversion to tensor.
if isinstance(examples[0], (dict, BatchEncoding)):
batch = pad(
encoded_inputs=examples,
return_tensors="pt",
pad_to_multiple_of=self.pad_to_multiple_of,
)
else:
batch = {
"input_ids": _collate_batch(
examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of
)
}
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
if self.mlm:
batch["input_ids"], batch["labels"] = self.mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
else:
batch["input_ids"] = torch.squeeze(batch["input_ids"], dim=0)
batch["token_type_ids"] = torch.squeeze(batch["token_type_ids"], dim=0)
return batch
def mask_tokens(
self, inputs: torch.Tensor, special_tokens_mask: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = torch.full(labels.shape, self.mlm_probability)
if special_tokens_mask is None:
special_tokens_mask = [
self.tokenizer.get_special_tokens_mask(
val, already_has_special_tokens=True
)
for val in labels.tolist()
]
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
else:
special_tokens_mask = special_tokens_mask.bool()
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = (
torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
)
# inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(
# self.tokenizer.mask_token
# )
inputs[indices_replaced] = self.tokenizer.token_to_id("[MASK]")
# 10% of the time, we replace masked input tokens with random word
indices_random = (
torch.bernoulli(torch.full(labels.shape, 0.5)).bool()
& masked_indices
& ~indices_replaced
)
random_words = torch.randint(
self.tokenizer.get_vocab_size(), labels.shape, dtype=torch.long
)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def pad(
encoded_inputs: Union[
BatchEncoding,
List[BatchEncoding],
Dict[str, EncodedInput],
Dict[str, List[EncodedInput]],
List[Dict[str, EncodedInput]],
],
padding=True,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_tensors=None,
verbose: bool = True,
) -> BatchEncoding:
"""
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
in the batch.
Padding side (left/right) padding token ids are defined at the tokenizer level (with ``self.padding_side``,
``self.pad_token_id`` and ``self.pad_token_type_id``)
.. note::
If the ``encoded_inputs`` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
result will use the same type unless you provide a different tensor type with ``return_tensors``. In the
case of PyTorch tensors, you will lose the specific device of your tensors however.
Args:
encoded_inputs (:class:`~transformers.BatchEncoding`, list of :class:`~transformers.BatchEncoding`, :obj:`Dict[str, List[int]]`, :obj:`Dict[str, List[List[int]]` or :obj:`List[Dict[str, List[int]]]`):
Tokenized inputs. Can represent one input (:class:`~transformers.BatchEncoding` or :obj:`Dict[str,
List[int]]`) or a batch of tokenized inputs (list of :class:`~transformers.BatchEncoding`, `Dict[str,
List[List[int]]]` or `List[Dict[str, List[int]]]`) so you can use this method during preprocessing as
well as in a PyTorch Dataloader collate function.
Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
see the note above for the return type.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
single sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
>= 7.5 (Volta).
return_attention_mask (:obj:`bool`, `optional`):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute.
`What are attention masks? <../glossary.html#attention-mask>`__
return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
If set, will return tensors instead of list of python integers. Acceptable values are:
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to print more information and warnings.
"""
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(encoded_inputs, (list, tuple)) and isinstance(
encoded_inputs[0], (dict, BatchEncoding)
):
encoded_inputs = {
key: [example[key] for example in encoded_inputs]
for key in encoded_inputs[0].keys()
}
required_input = encoded_inputs["input_ids"]
if not required_input:
if return_attention_mask:
encoded_inputs["attention_mask"] = []
return encoded_inputs
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
first_element = required_input[0]
if isinstance(first_element, (list, tuple)):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
index = 0
while len(required_input[index]) == 0:
index += 1
if index < len(required_input):
first_element = required_input[index][0]
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
if not isinstance(first_element, (int, list, tuple)):
if isinstance(first_element, torch.Tensor):
return_tensors = "pt" if return_tensors is None else return_tensors
elif isinstance(first_element, np.ndarray):
return_tensors = "np" if return_tensors is None else return_tensors
else:
raise ValueError(
f"type of {first_element} unknown: {type(first_element)}. "
f"Should be one of a python, numpy, pytorch or tensorflow object."
)
for key, value in encoded_inputs.items():
encoded_inputs[key] = to_py_obj(value)
required_input = encoded_inputs["input_ids"]
if required_input and not isinstance(required_input[0], (list, tuple)):
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
batch_size = len(required_input)
assert all(
len(v) == batch_size for v in encoded_inputs.values()
), "Some items in the output dictionary have a different batch size than others."
batch_outputs = {}
for i in range(batch_size):
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
for key, value in inputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
def _collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
# Tensorize if necessary.
if isinstance(examples[0], (list, tuple)):
examples = [torch.tensor(e, dtype=torch.long) for e in examples]
# Check if padding is necessary.
length_of_first = examples[0].size(0)
are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)
if are_tensors_same_length and (
pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0
):
return torch.stack(examples, dim=0)
# If yes, check if we have a `pad_token`.
if tokenizer._pad_token is None:
raise ValueError(
"You are attempting to pad samples but the tokenizer you are using"
f" ({tokenizer.__class__.__name__}) does not have a pad token."
)
# Creating the full tensor and filling it with our data.
max_length = max(x.size(0) for x in examples)
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
for i, example in enumerate(examples):
if tokenizer.padding_side == "right":
result[i, : example.shape[0]] = example
else:
result[i, -example.shape[0] :] = example
return result
def to_py_obj(obj):
if isinstance(obj, torch.Tensor):
return obj.detach().cpu().tolist()
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj

111
bert/obtain_inst_vec.py Normal file
View File

@ -0,0 +1,111 @@
import os
import numpy as np
import tokenizers
import torch
from transformers import (
BatchEncoding,
BertConfig,
BertForPreTraining
)
from .my_data_collator import MyDataCollatorForPreTraining
model_file = os.path.join("./bert/pytorch_model.bin")
tokenizer_file = os.path.join("./bert/tokenizer-inst.all.json")
config_file = os.path.join('./bert/bert.json')
# from my_data_collator import MyDataCollatorForPreTraining
# model_file = os.path.join("./pytorch_model.bin")
# tokenizer_file = os.path.join("./tokenizer-inst.all.json")
# config_file = os.path.join('./bert.json')
def load_model():
config = BertConfig.from_json_file(config_file)
model = BertForPreTraining(config)
state_dict = torch.load(model_file)
model.load_state_dict(state_dict)
model.eval()
tokenizer = tokenizers.Tokenizer.from_file(tokenizer_file)
tokenizer.enable_padding(
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=50
)
return model, tokenizer
def process_input(inst, tokenizer):
encoded_input = {}
if isinstance(inst, str):
# make a batch by myself
inst = [inst for _ in range(8)]
results = tokenizer.encode_batch(inst)
encoded_input["input_ids"] = [result.ids for result in results]
encoded_input["token_type_ids"] = [result.type_ids for result in results]
encoded_input["special_tokens_mask"] = [
result.special_tokens_mask for result in results
]
# print(encoded_input["input_ids"])
# use `np` rather than `pt` in case of reporting of error
batch_output = BatchEncoding(
encoded_input, tensor_type="np", prepend_batch_axis=False,
)
# print(batch_output["input_ids"])
# NOTE: utilize the "special_tokens_mask",
# only work if the input consists of single instruction
length_mask = 1 - batch_output["special_tokens_mask"]
data_collator = MyDataCollatorForPreTraining(tokenizer=tokenizer, mlm=False)
model_input = data_collator([batch_output])
# print(model_input["input_ids"])
return model_input, length_mask
def generate_inst_vec(inst, method="mean"):
model, tokenizer = load_model()
model_input, length_mask = process_input(inst, tokenizer)
length_mask = torch.from_numpy(length_mask).to(model_input["input_ids"].device)
output = model(**model_input, output_hidden_states=True)
if method == "cls":
if isinstance(inst, str):
return output.hidden_states[-1][0][0]
elif isinstance(inst, list):
return output.hidden_states[-1, :, 0, :]
elif method == "mean":
result = output.hidden_states[-1] * torch.unsqueeze(length_mask, dim=-1)
# print(result.shape)
if isinstance(inst, str):
result = torch.mean(result[0], dim=0)
elif isinstance(inst, list):
result = torch.mean(result, dim=1)
return result
elif method == "max":
result = output.hidden_states[-1] * torch.unsqueeze(length_mask, dim=-1)
# print(result.shape)
if isinstance(inst, str):
result = torch.max(result[0], dim=0)
elif isinstance(inst, list):
result = torch.max(result, dim=1)
return result
def bb2vec(inst):
tmp = generate_inst_vec(inst, method="mean")
return list(np.mean(tmp.detach().numpy(), axis=0))
if __name__ == "__main__":
temp = bb2vec(['adc byte [ ebp - 0x74 ] cl','mov dh 0x79','adc eax 1'])
temp = list(temp)
print(temp)

BIN
bert/pytorch_model.bin Normal file

Binary file not shown.

2147
bert/tokenizer-inst.all.json Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,11 +1,36 @@
import os
import r2pipe
import re
import hashlib
import log_utils
from my_utils import *
import json
# 基础块抽取
from bert.obtain_inst_vec import bb2vec
from tqdm import tqdm
import numpy as np
import os
# 禁用分词器多线程
os.environ["TOKENIZERS_PARALLELISM"] = "false"
ret_trap_opcode_family = ["ret", "hlt", "int3", "ud2"]
def extract_opcode(disasm_text):
"""
从反汇编文本中提取操作码和操作数
正则表达式用于匹配操作码和操作数考虑到操作数可能包含空格和逗号
将操作码与操作数转化为bert模型输入
"""
op_list = disasm_text.split(' ')
res = []
for item in op_list:
item = item.strip().replace(',', '')
if '[' in item:
res.append('[')
res.append(item.replace('[', '').replace(']', ''))
if ']' in item:
res.append(']')
return ' '.join(res)
def calc_sha256(file_path):
with open(file_path, 'rb') as f:
bytes = f.read()
@ -13,57 +38,88 @@ def calc_sha256(file_path):
sha256 = sha256obj.hexdigest()
return sha256
def extract_opcode(disasm_text):
"""
从反汇编文本中提取操作码和操作数
正则表达式用于匹配操作码和操作数考虑到操作数可能包含空格和逗号
"""
match = re.search(r"^\s*(\S+)(?:\s+(.*))?$", disasm_text)
if match:
opcode = match.group(1)
# operands_str = match.group(2) if match.group(2) is not None else ""
# split_pattern = re.compile(r",(?![^\[]*\])") # 用于切分操作数的正则表达式
# operands = split_pattern.split(operands_str)
# return opcode, [op.strip() for op in operands if op.strip()]
return opcode
return ""
def get_graph_cfg_r2pipe(r2pipe_open):
def get_graph_cfg_r2pipe(r2pipe_open, file_path):
# CFG提取
acfg_item = []
try:
# 获取函数列表
function_list = r2pipe_open.cmdj("aflj")
for function in function_list:
# 局部函数内的特征提取
node_list = []
edge_list = []
temp_edge_list = []
block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
block_number = len(block_list)
block_feature_list = []
for block in block_list:
node_list.append(block["addr"])
# 基本快块列表
block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
# 获取基本块数量
block_number = len(block_list)
for block in block_list:
# 基础块内的语句
block_addr = block["addr"]
block_Statement = []
node_list.append(block["addr"])
# 获取基本块的反汇编指令
disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
if disasm:
for op in disasm:
if op["type"] == "invalid":
continue
# TODO :这里需要处理指令的特征提取
block_feature = ''
block_feature_list.append(block_feature)
for op_index, op in enumerate(disasm):
# 提取操作码并转换为bert模型输入格式
block_Statement.append(extract_opcode(op["disasm"]))
# 处理跳转码并构建cfg
if 'jump' in op:
if op['jump'] == 0:
if op_index != len(disasm) - 1:
node_list.append(disasm[op_index + 1]['offset'])
# 处理跳转指令
if "jump" in op and op["jump"] != 0:
temp_edge_list.append([block["addr"], op["jump"]])
elif op['type'] == 'jmp':
temp_edge_list.append([block["addr"], op['jump']])
if op_index != len(disasm) - 1:
node_list.append(disasm[op_index + 1]['offset'])
elif op['type'] == 'cjmp':
temp_edge_list.append([block["addr"], op['jump']])
if op_index == len(disasm) - 1:
temp_edge_list.append([block_addr, op['jump']])
else:
temp_edge_list.append([block_addr, disasm[op_index + 1]["offset"]])
node_list.append(disasm[op_index + 1]["offset"])
elif op['type'] == 'call':
temp_edge_list.append([block_addr, op["jump"]])
temp_edge_list.append([op["jump"], block_addr])
if op_index == len(disasm) - 1:
temp_edge_list.append([block_addr, op["offset"] + op["size"]])
else:
logger.warning(
f"二进制可执行文件解析警告,跳转指令识别出错,指令{op}")
# 操作码不存在跳转指令
else:
if op_index != len(disasm) - 1:
# 当前指令不是基础块的最后一条指令
if op in ret_trap_opcode_family and op["type"] in ["ret", "trap"]:
node_list.append(disasm[op_index + 1]["offset"])
else:
# 当前指令是基础块的最后一条指令
if op not in ret_trap_opcode_family or op["type"] not in ["ret", "trap"]:
temp_edge_list.append([block_addr, op["offset"] + op["size"]])
# bert模型转化特征
block_feature_list = bb2vec(block_Statement)
# block_feature_list = []
# 过滤不存在的边
for temp_edge in temp_edge_list:
if temp_edge[1] in node_list:
if temp_edge[0] in node_list and temp_edge[1] in node_list:
edge_list.append(temp_edge)
# 单独错误信息日志
if block_number == 0 or len(block_feature_list) == 0:
logger.warning(f"二进制可执行文件解析出错,出错文件:{file_path},出错函数地址:{function['offset']},基础块个数{block_number},基础块特征{block_feature_list}")
# cfg构建
acfg = {
'block_number': block_number,
'block_edges': [[d[0] for d in edge_list], [d[1] for d in edge_list]],
@ -74,45 +130,16 @@ def get_graph_cfg_r2pipe(r2pipe_open):
except Exception as e:
return False, e, None
# for block in block_list:
# node_list.append(block["addr"])
#
# # 获取基本块的反汇编指令
# disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
# node_info = []
# if disasm:
# for op in disasm:
# if op["type"] == "invalid":
# continue
# opcode, operands = extract_opcode(op["disasm"])
# # 处理跳转指令
# if "jump" in op and op["jump"] != 0:
# temp_edge_list.append([block["addr"], op["jump"]])
# node_info.append([op["offset"], op["bytes"], opcode, op["jump"]])
# else:
# node_info.append([op["offset"], op["bytes"], opcode, None])
# node_info_list.append(node_info)
# 完成 CFG 构建后, 检查并清理不存在的出边
# 获取排序后元素的原始索引
# sorted_indices = [i for i, v in sorted(enumerate(node_list), key=lambda x: x[1])]
# # 根据这些索引重新排列
# node_list = [node_list[i] for i in sorted_indices]
# node_info_list = [node_info_list[i] for i in sorted_indices]
#
# return True, "二进制可执行文件解析成功", node_list, edge_list, node_info_list
# except Exception as e:
# return False, e, None, None, None
def get_graph_fcg_r2pipe(r2pipe_open):
# FCG提取
try:
function_list = r2pipe_open.cmdj("aflj")
node_list = []
func_name_list = []
edge_list = []
temp_edge_list = []
function_list = r2pipe_open.cmdj("aflj")
function_num = len(function_list)
for function in function_list:
@ -121,13 +148,11 @@ def get_graph_fcg_r2pipe(r2pipe_open):
pdf = r2pipe_open.cmdj('pdfj')
if pdf is None:
continue
node_bytes = ""
node_opcode = ""
for op in pdf["ops"]:
if op["type"] == "invalid":
continue
node_bytes += op["bytes"]
opcode = extract_opcode(op["disasm"])
node_opcode += opcode + " "
@ -141,13 +166,14 @@ def get_graph_fcg_r2pipe(r2pipe_open):
for temp_edge in temp_edge_list:
if temp_edge[1] in node_list:
edge_list.append(temp_edge)
sub_function_name_list = ('fcn.', 'loc.', 'main', 'entry')
func_name_list = [func_name for func_name in func_name_list if not func_name.startswith(sub_function_name_list)]
sub_function_name_list = ('sym.','sub','imp')
func_name_list = [func_name for func_name in func_name_list if func_name.startswith(sub_function_name_list)]
return True, "二进制可执行文件解析成功", function_num, edge_list, func_name_list
except Exception as e:
return False, e, None, None, None
def get_r2pipe(file_path):
# 初始化r2pipe
try:
r2 = r2pipe.open(file_path, flags=['-2'])
r2.cmd("aaa")
@ -157,16 +183,21 @@ def get_r2pipe(file_path):
return None
def init_logging():
log_file = "./out/exe2json.log"
logging = log_utils.setup_logger('exe2json', log_file)
return logging
# 初始化日志
log_file = "./log/exe2json.log"
return setup_logger('exe2json', log_file)
def exe_to_json(file_path, output_path):
logging = init_logging()
def exe_to_json(file_path):
output_path = "./out/json/malware"
# 获取r2pipe并解析文件 解析完即释放r2
r2 = get_r2pipe(file_path)
fcg_Operation_flag, fcg_Operation_message, function_num, function_fcg_edge_list, function_names = get_graph_fcg_r2pipe(r2)
cfg_Operation_flag, cfg_Operation_message, cfg_item = get_graph_cfg_r2pipe(r2)
cfg_Operation_flag, cfg_Operation_message, cfg_item = get_graph_cfg_r2pipe(r2,file_path)
r2.quit()
# 文件json构建
file_fingerprint = calc_sha256(file_path)
if fcg_Operation_flag and cfg_Operation_flag:
json_obj = {
@ -178,19 +209,24 @@ def exe_to_json(file_path, output_path):
'function_names': function_names
}
else:
logging.error(f"二进制可执行文件解析失败 文件地址{file_path}")
logger.error(f"二进制可执行文件解析失败 文件{file_path}")
if not fcg_Operation_flag:
logging.error(f"fcg错误{fcg_Operation_message}")
logger.error(f"fcg错误{fcg_Operation_message}")
if not cfg_Operation_flag:
logging.error(f"cfg错误{cfg_Operation_message}")
logger.error(f"cfg错误{cfg_Operation_message}")
return False
r2.quit()
result = json.dumps(json_obj,ensure_ascii=False)
# json写入
result = json.dumps(json_obj,ensure_ascii=False, default=lambda x: float(x) if isinstance(x, np.float32) else x)
os.makedirs(output_path, exist_ok=True)
with open(os.path.join(output_path, file_fingerprint + '.jsonl'), 'w') as out:
out.write(result)
out.close()
return True
if __name__ == '__main__':
test_file_path = '/mnt/d/bishe/exe2json/sample/VirusShare_0a3b625380161cf92c4bb10135326bb5'
exe_to_json(test_file_path, './out/json')
logger = init_logging()
sample_file_path = "/mnt/d/bishe/dataset/sample_malware"
sample_file_list = os.listdir(sample_file_path)
multi_thread(exe_to_json, [os.path.join(sample_file_path, file_name) for file_name in sample_file_list])
# test_file_path = '/mnt/d/bishe/exe2json/sample/VirusShare_0a3b625380161cf92c4bb10135326bb5'
# exe_to_json(test_file_path)

65
my_utils.py Normal file
View File

@ -0,0 +1,65 @@
import logging
import os
"""
日志工具
使用方法
logger = setup_logger(日志记录器的实例名字, 日志文件目录)
"""
def setup_logger(name, log_file, level=logging.INFO):
"""Function setup as many loggers as you want"""
if not os.path.exists(os.path.dirname(log_file)):
os.makedirs(os.path.dirname(log_file))
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
handler = logging.FileHandler(log_file)
handler.setFormatter(formatter)
# 控制台是否输出日志信息
# stream_handler = logging.StreamHandler()
# stream_handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(level)
logger.addHandler(handler)
# 控制台
# logger.addHandler(stream_handler)
# 刷新原有log文件
if os.path.exists(log_file):
open(log_file, 'w').close()
return logger
"""
多线程工具
"""
THREAD_FULL = os.cpu_count()
THREAD_HALF = int(os.cpu_count() / 2)
def multi_thread(func, args, thread_num=THREAD_FULL):
"""
多线程执行函数
:param func: 函数
:param args: list函数参数
:param thread_num: 线程数
:return:
"""
import concurrent.futures
from tqdm import tqdm
logger = setup_logger('multi_thread', './multi_thread.log')
result = []
with concurrent.futures.ThreadPoolExecutor(max_workers=thread_num) as executor:
futures_to_args = {
executor.submit(func, arg): arg for arg in args
}
for future in tqdm(concurrent.futures.as_completed(futures_to_args), total=len(args)):
try:
result.append(future.result())
except Exception as exc:
logger.error('%r generated an exception: %s' % (futures_to_args[future], exc))
return result