外部函数测试
This commit is contained in:
parent
3f4bde2989
commit
8e9c7e31c4
104
OpcodeGet.py
104
OpcodeGet.py
@ -1,3 +1,4 @@
|
|||||||
|
import concurrent.futures
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
from log_utils import setup_logger
|
from log_utils import setup_logger
|
||||||
@ -7,19 +8,25 @@ import r2pipe
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
csv_lock = 0
|
||||||
|
|
||||||
|
|
||||||
def Opcode_to_csv(opcode_list, file_type):
|
def Opcode_to_csv(opcode_list, file_type):
|
||||||
logger.info("*======================start write==================================*")
|
|
||||||
csv_write(f'output_{file_type}.csv', opcode_list)
|
csv_write(f'output_{file_type}.csv', opcode_list)
|
||||||
logger.info(f"done {done_file_num} files")
|
logger.info(f"done {done_file_num} files")
|
||||||
logger.info("*=================write to csv success==============================*")
|
|
||||||
|
|
||||||
|
|
||||||
def csv_write(file_name, data: list):
|
def csv_write(file_name, data: list):
|
||||||
"""write data to csv"""
|
"""write data to csv"""
|
||||||
|
logger.info("*======================start write==================================*")
|
||||||
df = pd.DataFrame(data)
|
df = pd.DataFrame(data)
|
||||||
chunksize = 1000
|
chunksize = 1000
|
||||||
for i in range(0, len(df), chunksize):
|
for i in range(0, len(df), chunksize):
|
||||||
df.iloc[i:i + chunksize].to_csv(f'./out/{file_name}', mode='a', header=False, index=False)
|
df.iloc[i:i + chunksize].to_csv(f'./out/{file_name}', mode='a', header=False, index=False)
|
||||||
|
logger.info(f"done rows {len(df)}")
|
||||||
|
logger.info("*=================write to csv success==============================*")
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
@ -39,13 +46,15 @@ def extract_opcode(disasm_text):
|
|||||||
return ""
|
return ""
|
||||||
|
|
||||||
|
|
||||||
def get_graph_r2pipe(r2pipe_open, file_type):
|
def get_graph_r2pipe(file_type, file_name):
|
||||||
# 获取基础块内的操作码序列
|
# 获取基础块内的操作码序列
|
||||||
|
r2pipe_open = r2pipe.open(os.path.join(file_path, file_name), flags=['-2'])
|
||||||
opcode_Sequence = []
|
opcode_Sequence = []
|
||||||
try:
|
try:
|
||||||
# 获取函数列表
|
# 获取函数列表
|
||||||
|
r2pipe_open.cmd("aaa")
|
||||||
|
r2pipe_open.cmd('e arch=x86')
|
||||||
function_list = r2pipe_open.cmdj("aflj")
|
function_list = r2pipe_open.cmdj("aflj")
|
||||||
|
|
||||||
for function in function_list:
|
for function in function_list:
|
||||||
|
|
||||||
# 外部函数测试
|
# 外部函数测试
|
||||||
@ -68,74 +77,45 @@ def get_graph_r2pipe(r2pipe_open, file_type):
|
|||||||
disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
|
disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
|
||||||
if disasm:
|
if disasm:
|
||||||
for op in disasm:
|
for op in disasm:
|
||||||
if op["type"] == "invalid":
|
if op["type"] == "invalid" or op["opcode"] == "invalid":
|
||||||
continue
|
continue
|
||||||
block_opcode_Sequence.append(extract_opcode(op["opcode"]))
|
block_opcode_Sequence.append(extract_opcode(op["opcode"]))
|
||||||
opcode_Sequence.append(
|
opcode_Sequence.append(
|
||||||
[file_type, file_type, len(block_opcode_Sequence), ' '.join(block_opcode_Sequence)])
|
[file_type, file_type, len(block_opcode_Sequence), ' '.join(block_opcode_Sequence)])
|
||||||
except:
|
except Exception as e:
|
||||||
print("Error: get function list failed")
|
logger.error(f"Error: get function list failed in {file_name}")
|
||||||
|
print(f"Error: get function list failed in {file_name} ,error info {e}")
|
||||||
|
r2pipe_open.quit()
|
||||||
return opcode_Sequence
|
return opcode_Sequence
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
logger = setup_logger('logger', './log/opcode_benign.log')
|
file_type = 'malware'
|
||||||
file_type = 'benign'
|
logger = setup_logger('logger', f'./log/opcode_{file_type}.log')
|
||||||
file_path = os.path.join('/mnt/d/bishe/dataset/train_benign')
|
file_path = os.path.join('/mnt/d/bishe/dataset/sample_20230130_458')
|
||||||
|
print(f"max works {os.cpu_count()}")
|
||||||
file_list = os.listdir(file_path)[:10000]
|
file_list = os.listdir(file_path)[:10000]
|
||||||
done_file_num = 0
|
done_file_num = 0
|
||||||
process_bar = tqdm(desc='Processing...', leave=True, total=len(file_list))
|
|
||||||
done_list = [['class', 'sub-class', 'size', 'corpus']]
|
done_list = [['class', 'sub-class', 'size', 'corpus']]
|
||||||
for file_name in file_list:
|
process_bar = tqdm(desc=f'Processing {file_type}...', leave=True, total=len(file_list))
|
||||||
r2pipe_open = r2pipe.open(os.path.join(file_path, file_name), flags=['-2'])
|
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor: # 调整线程池大小
|
||||||
r2pipe_open.cmd("aaa")
|
future_to_args = {
|
||||||
done_list.extend(get_graph_r2pipe(r2pipe_open, file_type))
|
executor.submit(get_graph_r2pipe, file_type, file_name): file_name for file_name in file_list
|
||||||
if len(done_list) > 100000:
|
}
|
||||||
|
for future in concurrent.futures.as_completed(future_to_args):
|
||||||
|
try:
|
||||||
|
tmp = future.result()
|
||||||
|
done_list.extend(tmp if len(tmp) > 0 else [])
|
||||||
|
if len(done_list) > 100000:
|
||||||
|
csv_write(f'output_{file_type}.csv', done_list)
|
||||||
|
done_file_num += 1
|
||||||
|
done_list.clear()
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error: {e}")
|
||||||
|
print(f"Error: {e}")
|
||||||
|
finally:
|
||||||
|
process_bar.update(1)
|
||||||
|
else:
|
||||||
csv_write(f'output_{file_type}.csv', done_list)
|
csv_write(f'output_{file_type}.csv', done_list)
|
||||||
done_file_num += 1
|
|
||||||
done_list.clear()
|
|
||||||
process_bar.update(1)
|
|
||||||
else:
|
|
||||||
csv_write(f'output_{file_type}.csv', done_list)
|
|
||||||
|
|
||||||
# node_list = []
|
|
||||||
# edge_list = []
|
|
||||||
# temp_edge_list = []
|
|
||||||
# node_info_list = []
|
|
||||||
#
|
|
||||||
# for function in function_list:
|
|
||||||
# block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
|
|
||||||
#
|
|
||||||
# for block in block_list:
|
|
||||||
# node_list.append(block["addr"])
|
|
||||||
#
|
|
||||||
# # 获取基本块的反汇编指令
|
|
||||||
# disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
|
|
||||||
# node_info = []
|
|
||||||
# if disasm:
|
|
||||||
# for op in disasm:
|
|
||||||
# if op["type"] == "invalid":
|
|
||||||
# continue
|
|
||||||
# opcode, operands = extract_opcode_and_operands(op["disasm"])
|
|
||||||
# # 处理跳转指令
|
|
||||||
# if "jump" in op and op["jump"] != 0:
|
|
||||||
# temp_edge_list.append([block["addr"], op["jump"]])
|
|
||||||
# node_info.append([op["offset"], op["bytes"], opcode, op["jump"]])
|
|
||||||
# else:
|
|
||||||
# node_info.append([op["offset"], op["bytes"], opcode, None])
|
|
||||||
# node_info_list.append(node_info)
|
|
||||||
#
|
|
||||||
# # 完成 CFG 构建后, 检查并清理不存在的出边
|
|
||||||
# for temp_edge in temp_edge_list:
|
|
||||||
# if temp_edge[1] in node_list:
|
|
||||||
# edge_list.append(temp_edge)
|
|
||||||
#
|
|
||||||
# # 获取排序后元素的原始索引
|
|
||||||
# sorted_indices = [i for i, v in sorted(enumerate(node_list), key=lambda x: x[1])]
|
|
||||||
# # 根据这些索引重新排列
|
|
||||||
# node_list = [node_list[i] for i in sorted_indices]
|
|
||||||
# node_info_list = [node_info_list[i] for i in sorted_indices]
|
|
||||||
#
|
|
||||||
# return True, "二进制可执行文件解析成功", node_list, edge_list, node_info_list
|
|
||||||
# except Exception as e:
|
|
||||||
# return False, e, None, None, None
|
|
||||||
|
36
funNameGet.py
Normal file
36
funNameGet.py
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
import concurrent.futures
|
||||||
|
import os
|
||||||
|
import r2pipe
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
def get_fun_name_list(file_path):
|
||||||
|
# 读取csv文件
|
||||||
|
r2 = r2pipe.open(os.path.join(file_path), flags=['-2'])
|
||||||
|
r2.cmd('aaa')
|
||||||
|
r2.cmd('e arch=x86')
|
||||||
|
function_list = r2.cmdj("aflj")
|
||||||
|
fun_name_list = []
|
||||||
|
for function in function_list:
|
||||||
|
fun_name_list.append(function['name'])
|
||||||
|
r2.quit()
|
||||||
|
return fun_name_list
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
file_path = os.path.join('/mnt/d/bishe/dataset/sample_20230130_458')
|
||||||
|
file_list = os.listdir(file_path)
|
||||||
|
fun_name_set = {}
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=6) as executor:
|
||||||
|
future_to_args = {
|
||||||
|
executor.submit(get_fun_name_list, os.path.join(file_path, file_name)): file_name
|
||||||
|
for file_name in file_list
|
||||||
|
}
|
||||||
|
for future in tqdm(concurrent.futures.as_completed(future_to_args), total=len(future_to_args)):
|
||||||
|
fun_name_list = future.result()
|
||||||
|
for fun_name in fun_name_list:
|
||||||
|
if fun_name not in fun_name_set:
|
||||||
|
fun_name_set[fun_name] = 1
|
||||||
|
else:
|
||||||
|
fun_name_set[fun_name] += 1
|
||||||
|
print(fun_name_set)
|
188
ngram.py
188
ngram.py
@ -1,3 +1,4 @@
|
|||||||
|
import threading
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -101,6 +102,8 @@ def process_csv_file(csvfile, ngram_type, file_percent_filter, frequency_filter)
|
|||||||
idx + 1, file_percent_filter, frequency_filter): start for start in
|
idx + 1, file_percent_filter, frequency_filter): start for start in
|
||||||
range(0, len(dataframe['corpus'].values), 10000)
|
range(0, len(dataframe['corpus'].values), 10000)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
for future in concurrent.futures.as_completed(future_to_args):
|
for future in concurrent.futures.as_completed(future_to_args):
|
||||||
try:
|
try:
|
||||||
sub_ngram_list, sub_filtered_ngram_list = future.result()
|
sub_ngram_list, sub_filtered_ngram_list = future.result()
|
||||||
@ -122,11 +125,28 @@ def process_csv_file(csvfile, ngram_type, file_percent_filter, frequency_filter)
|
|||||||
|
|
||||||
# Execute the parse_args() method
|
# Execute the parse_args() method
|
||||||
|
|
||||||
|
def build_csv(ngram_list, filter_list, maxgrams, file_type):
|
||||||
|
ngramDicList = []
|
||||||
|
csv_file_header = ['ngram', 'count']
|
||||||
|
csv_file = os.path.join('./out', f'{file_type}-{maxgrams}-gram.csv')
|
||||||
|
for index in tqdm(range(len(ngram_list)), desc=f'Building {maxgrams}-gram csv'):
|
||||||
|
ngramDicList.append({
|
||||||
|
'ngram': ngram_list[index],
|
||||||
|
'count': filter_list[index]
|
||||||
|
})
|
||||||
|
try:
|
||||||
|
csv_file = open(csv_file, 'w')
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error opening {csv_file} for writing: {e}")
|
||||||
|
WriteCSV(csv_file, csv_file_header, ngramDicList)
|
||||||
|
csv_file.close()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# Get user arguments
|
# Get user arguments
|
||||||
malware_csvfile = os.path.join('./out/output_malware.csv')
|
malware_csvfile = os.path.join('./out/output_malware.csv')
|
||||||
benign_csvfile = os.path.join('./out/output_benign.csv')
|
benign_csvfile = os.path.join('./out/output_benign.csv')
|
||||||
maxgrams = 3
|
maxgrams_list = [3,2,1]
|
||||||
|
|
||||||
# Error check and exit if not a file
|
# Error check and exit if not a file
|
||||||
if not (os.path.isfile(malware_csvfile) and os.path.isfile(benign_csvfile)):
|
if not (os.path.isfile(malware_csvfile) and os.path.isfile(benign_csvfile)):
|
||||||
@ -136,100 +156,90 @@ if __name__ == '__main__':
|
|||||||
# Read the csv file using pandas into data frame
|
# Read the csv file using pandas into data frame
|
||||||
|
|
||||||
# Build a frequency list for ngrams
|
# Build a frequency list for ngrams
|
||||||
filePercentFilter = 80 ## select ngrams present in x% of files
|
for maxgrams in maxgrams_list:
|
||||||
frequencyFilter = 20 ## select ngrams with frequency greater than this value
|
filePercentFilter = 80 ## select ngrams present in x% of files
|
||||||
|
frequencyFilter = 20 ## select ngrams with frequency greater than this value
|
||||||
|
|
||||||
malwareNgram = defaultdict(int) ## full list of ngrams in malware corpus
|
malwareNgram = defaultdict(int) ## full list of ngrams in malware corpus
|
||||||
benignNgram = defaultdict(int) ## full list of ngrams in benign corpus
|
benignNgram = defaultdict(int) ## full list of ngrams in benign corpus
|
||||||
filteredMalwareNgram = defaultdict(int) ## filtered list of ngrams from malware corpus
|
filteredMalwareNgram = defaultdict(int) ## filtered list of ngrams from malware corpus
|
||||||
filteredBenignNgram = defaultdict(int) ## filtered list of ngrams from benign corpus
|
filteredBenignNgram = defaultdict(int) ## filtered list of ngrams from benign corpus
|
||||||
|
|
||||||
## common list ngrams from both malware and benign corpus with relative frequency (benignFreq - malwareFreq)
|
## common list ngrams from both malware and benign corpus with relative frequency (benignFreq - malwareFreq)
|
||||||
filteredMergedNgram = defaultdict(int)
|
filteredMergedNgram = defaultdict(int)
|
||||||
|
|
||||||
# run for only the maxgram provided, change lower value to 0 to run for all values [1..N]
|
# run for only the maxgram provided, change lower value to 0 to run for all values [1..N]
|
||||||
for idx in range(maxgrams - 1, maxgrams):
|
for idx in range(maxgrams - 1, maxgrams):
|
||||||
print(f"Computing {idx + 1}gram on files ...")
|
print(f"Computing {idx + 1}gram on files ...")
|
||||||
print(f"CPU core {os.cpu_count()} on use")
|
print(f"CPU core {os.cpu_count()} on use")
|
||||||
malwareNgram = []
|
malwareNgram = []
|
||||||
filteredMalwareNgram = []
|
filteredMalwareNgram = []
|
||||||
benignNgram = []
|
benignNgram = []
|
||||||
filteredBenignNgram = []
|
filteredBenignNgram = []
|
||||||
malwareNgram.clear()
|
malwareNgram.clear()
|
||||||
filteredMalwareNgram.clear()
|
filteredMalwareNgram.clear()
|
||||||
benignNgram.clear()
|
benignNgram.clear()
|
||||||
filteredBenignNgram.clear()
|
filteredBenignNgram.clear()
|
||||||
filteredMergedNgram.clear()
|
filteredMergedNgram.clear()
|
||||||
|
|
||||||
# opcodes decoded from pe file in sequence is stored as corpus in the csv
|
# opcodes decoded from pe file in sequence is stored as corpus in the csv
|
||||||
malwareNgram, filteredMalwareNgram = process_csv_file(malware_csvfile, 'malware', filePercentFilter, frequencyFilter)
|
malwareNgram, filteredMalwareNgram = process_csv_file(malware_csvfile, 'malware', filePercentFilter,
|
||||||
|
frequencyFilter)
|
||||||
|
# build_csv(malwareNgram, filteredMalwareNgram, maxgrams, 'malware')
|
||||||
|
benignNgram, filteredBenignNgram = process_csv_file(benign_csvfile, 'benign', filePercentFilter,
|
||||||
|
frequencyFilter)
|
||||||
|
# build_csv(benignNgram, filteredBenignNgram, maxgrams, 'benign')
|
||||||
|
|
||||||
benignNgram, filteredBenignNgram = process_csv_file(benign_csvfile, 'benign', filePercentFilter, frequencyFilter)
|
|
||||||
|
|
||||||
# creates a sorted list of ngram tuples with their frequency for 1 .. maxgram
|
# creates a sorted list of ngram tuples with their frequency for 1 .. maxgram
|
||||||
|
|
||||||
mergedList = list(set().union(filteredMalwareNgram.keys(), filteredBenignNgram.keys()))
|
mergedList = list(set().union(filteredMalwareNgram.keys(), filteredBenignNgram.keys()))
|
||||||
## Now find the relative frequency b/w benign and malware files. = benign - malware
|
## Now find the relative frequency b/w benign and malware files. = benign - malware
|
||||||
## write this for cases where ngrams only present in one of the clases malware or benign
|
## write this for cases where ngrams only present in one of the clases malware or benign
|
||||||
## for reusability in case a union of classes is taken.
|
## for reusability in case a union of classes is taken.
|
||||||
for item in mergedList:
|
for item in mergedList:
|
||||||
key = item # get the ngram only
|
key = item # get the ngram only
|
||||||
if key in filteredBenignNgram:
|
if key in filteredBenignNgram:
|
||||||
if key in filteredMalwareNgram:
|
if key in filteredMalwareNgram:
|
||||||
filteredMergedNgram[key] = filteredBenignNgram[key] - filteredMalwareNgram[key]
|
filteredMergedNgram[key] = filteredBenignNgram[key] - filteredMalwareNgram[key]
|
||||||
elif item in malwareNgram:
|
elif item in malwareNgram:
|
||||||
filteredMergedNgram[key] = filteredBenignNgram[key] - malwareNgram[key]
|
filteredMergedNgram[key] = filteredBenignNgram[key] - malwareNgram[key]
|
||||||
else:
|
else:
|
||||||
filteredMergedNgram[key] = filteredBenignNgram[key]
|
filteredMergedNgram[key] = filteredBenignNgram[key]
|
||||||
elif key in filteredMalwareNgram:
|
elif key in filteredMalwareNgram:
|
||||||
if key in benignNgram:
|
if key in benignNgram:
|
||||||
filteredMergedNgram[key] = benignNgram[key] - filteredMalwareNgram[key]
|
filteredMergedNgram[key] = benignNgram[key] - filteredMalwareNgram[key]
|
||||||
else:
|
else:
|
||||||
filteredMergedNgram[key] = filteredMalwareNgram[key]
|
filteredMergedNgram[key] = filteredMalwareNgram[key]
|
||||||
|
|
||||||
print(f"Merged: {idx + 1}gramCnt={len(filteredMergedNgram.keys())}")
|
print(f"Merged: {idx + 1}gramCnt={len(filteredMergedNgram.keys())}")
|
||||||
## get a sorted list of merged ngrams with relative frequencies
|
# ## get a sorted list of merged ngrams with relative frequencies
|
||||||
sortedMergedNgramList = sorted(filteredMergedNgram.items(), key=lambda x: x[1])
|
sortedMergedNgramList = sorted(filteredMergedNgram.items(), key=lambda x: x[1])
|
||||||
|
|
||||||
# Plot a scatter graph -
|
# write the final ngrams into a file for feature selection
|
||||||
# y values as relative frequency benign-malware
|
AbsoluteNgramDictList = []
|
||||||
# x values as max frequency of a ngram max(malware, benign)
|
RelativeNgramDictList = []
|
||||||
# color labels as 'a' + frequency % 26
|
for item in sortedMergedNgramList:
|
||||||
# size as frequency/max * 100
|
dictItem = {}
|
||||||
# hover name is ngram name
|
key = item[0]
|
||||||
# titlestr = str(idx + 1) + "gram: Total samples(" + str(len(sortedMergedNgramList)) + ")"
|
dictItem['ngram'] = key
|
||||||
# htmlfile = str(idx + 1) + "gram.html"
|
dictItem['count'] = max(filteredMalwareNgram[key], filteredBenignNgram[key])
|
||||||
# hovername = [item[0] for item in sortedMergedNgramList]
|
AbsoluteNgramDictList.append(dictItem)
|
||||||
# yval = [item[1]/1e10 for item in sortedMergedNgramList]
|
RelativeNgramDictList.append({'ngram': item[0], 'count': item[1]})
|
||||||
# xval = []
|
csvfields = ['ngram', 'count']
|
||||||
# for key in hovername:
|
AbsoluteCsvName = "./out/" + str(idx + 1) + "gram-absolute.csv"
|
||||||
# xval.append(max(filteredMalwareNgram[key], filteredBenignNgram[key]))
|
RelativeCsvName = "./out/" + str(idx + 1) + "gram-relative.csv"
|
||||||
# colors = [chr(ord('a') + (value % 26)) for value in xval]
|
print("*======================start write csv=======================================*")
|
||||||
# maxval = max(xval)
|
try:
|
||||||
# sizeval = [(int((val / maxval) * 100) + 1) for val in xval]
|
csvfile = open(AbsoluteCsvName, 'w')
|
||||||
#
|
except Exception as err:
|
||||||
# fig = px.scatter(title=titlestr, y=yval, x=xval, color=colors,
|
print(f"Error: writing csvfile {err}")
|
||||||
# size=sizeval, hover_name=hovername, log_x=True,
|
WriteCSV(csvfile, csvfields, AbsoluteNgramDictList)
|
||||||
# labels={
|
csvfile.close()
|
||||||
# "x": "Absolute Frequency",
|
try:
|
||||||
# "y": "Relative Frequency"})
|
csvfile = open(RelativeCsvName, 'w')
|
||||||
# fig.write_html(htmlfile)
|
except Exception as err:
|
||||||
|
print(print(f"Error: writing csvfile {err}"))
|
||||||
# write the final ngrams into a file for feature selection
|
WriteCSV(csvfile, csvfields, RelativeNgramDictList)
|
||||||
ngramDictList = []
|
csvfile.close()
|
||||||
for item in sortedMergedNgramList:
|
print("*======================end write csv=======================================*")
|
||||||
dictItem = {}
|
|
||||||
key = item[0]
|
|
||||||
dictItem['ngram'] = key
|
|
||||||
dictItem['count'] = max(filteredMalwareNgram[key], filteredBenignNgram[key])
|
|
||||||
ngramDictList.append(dictItem)
|
|
||||||
|
|
||||||
csvfields = ['ngram', 'count']
|
|
||||||
csvname = "./out/"+str(idx + 1) + "gram.csv"
|
|
||||||
print("*======================start write csv=======================================*")
|
|
||||||
try:
|
|
||||||
csvfile = open(csvname, 'w')
|
|
||||||
except Exception as err:
|
|
||||||
print(f"Error: writing csvfile {err}")
|
|
||||||
WriteCSV(csvfile, csvfields, ngramDictList)
|
|
||||||
csvfile.close()
|
|
||||||
|
Loading…
Reference in New Issue
Block a user