外部函数测试

This commit is contained in:
huihun 2024-03-13 15:09:12 +08:00
parent 3f4bde2989
commit 8e9c7e31c4
3 changed files with 177 additions and 151 deletions

View File

@ -1,3 +1,4 @@
import concurrent.futures
import os import os
import re import re
from log_utils import setup_logger from log_utils import setup_logger
@ -7,19 +8,25 @@ import r2pipe
import pandas as pd import pandas as pd
csv_lock = 0
def Opcode_to_csv(opcode_list, file_type): def Opcode_to_csv(opcode_list, file_type):
logger.info("*======================start write==================================*")
csv_write(f'output_{file_type}.csv', opcode_list) csv_write(f'output_{file_type}.csv', opcode_list)
logger.info(f"done {done_file_num} files") logger.info(f"done {done_file_num} files")
logger.info("*=================write to csv success==============================*")
def csv_write(file_name, data: list): def csv_write(file_name, data: list):
"""write data to csv""" """write data to csv"""
logger.info("*======================start write==================================*")
df = pd.DataFrame(data) df = pd.DataFrame(data)
chunksize = 1000 chunksize = 1000
for i in range(0, len(df), chunksize): for i in range(0, len(df), chunksize):
df.iloc[i:i + chunksize].to_csv(f'./out/{file_name}', mode='a', header=False, index=False) df.iloc[i:i + chunksize].to_csv(f'./out/{file_name}', mode='a', header=False, index=False)
logger.info(f"done rows {len(df)}")
logger.info("*=================write to csv success==============================*")
return True return True
@ -39,13 +46,15 @@ def extract_opcode(disasm_text):
return "" return ""
def get_graph_r2pipe(r2pipe_open, file_type): def get_graph_r2pipe(file_type, file_name):
# 获取基础块内的操作码序列 # 获取基础块内的操作码序列
r2pipe_open = r2pipe.open(os.path.join(file_path, file_name), flags=['-2'])
opcode_Sequence = [] opcode_Sequence = []
try: try:
# 获取函数列表 # 获取函数列表
r2pipe_open.cmd("aaa")
r2pipe_open.cmd('e arch=x86')
function_list = r2pipe_open.cmdj("aflj") function_list = r2pipe_open.cmdj("aflj")
for function in function_list: for function in function_list:
# 外部函数测试 # 外部函数测试
@ -68,74 +77,45 @@ def get_graph_r2pipe(r2pipe_open, file_type):
disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"])) disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
if disasm: if disasm:
for op in disasm: for op in disasm:
if op["type"] == "invalid": if op["type"] == "invalid" or op["opcode"] == "invalid":
continue continue
block_opcode_Sequence.append(extract_opcode(op["opcode"])) block_opcode_Sequence.append(extract_opcode(op["opcode"]))
opcode_Sequence.append( opcode_Sequence.append(
[file_type, file_type, len(block_opcode_Sequence), ' '.join(block_opcode_Sequence)]) [file_type, file_type, len(block_opcode_Sequence), ' '.join(block_opcode_Sequence)])
except: except Exception as e:
print("Error: get function list failed") logger.error(f"Error: get function list failed in {file_name}")
print(f"Error: get function list failed in {file_name} ,error info {e}")
r2pipe_open.quit()
return opcode_Sequence return opcode_Sequence
if __name__ == '__main__': if __name__ == '__main__':
logger = setup_logger('logger', './log/opcode_benign.log') file_type = 'malware'
file_type = 'benign' logger = setup_logger('logger', f'./log/opcode_{file_type}.log')
file_path = os.path.join('/mnt/d/bishe/dataset/train_benign') file_path = os.path.join('/mnt/d/bishe/dataset/sample_20230130_458')
print(f"max works {os.cpu_count()}")
file_list = os.listdir(file_path)[:10000] file_list = os.listdir(file_path)[:10000]
done_file_num = 0 done_file_num = 0
process_bar = tqdm(desc='Processing...', leave=True, total=len(file_list))
done_list = [['class', 'sub-class', 'size', 'corpus']] done_list = [['class', 'sub-class', 'size', 'corpus']]
for file_name in file_list: process_bar = tqdm(desc=f'Processing {file_type}...', leave=True, total=len(file_list))
r2pipe_open = r2pipe.open(os.path.join(file_path, file_name), flags=['-2']) with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor: # 调整线程池大小
r2pipe_open.cmd("aaa") future_to_args = {
done_list.extend(get_graph_r2pipe(r2pipe_open, file_type)) executor.submit(get_graph_r2pipe, file_type, file_name): file_name for file_name in file_list
if len(done_list) > 100000: }
for future in concurrent.futures.as_completed(future_to_args):
try:
tmp = future.result()
done_list.extend(tmp if len(tmp) > 0 else [])
if len(done_list) > 100000:
csv_write(f'output_{file_type}.csv', done_list)
done_file_num += 1
done_list.clear()
except Exception as e:
logger.error(f"Error: {e}")
print(f"Error: {e}")
finally:
process_bar.update(1)
else:
csv_write(f'output_{file_type}.csv', done_list) csv_write(f'output_{file_type}.csv', done_list)
done_file_num += 1
done_list.clear()
process_bar.update(1)
else:
csv_write(f'output_{file_type}.csv', done_list)
# node_list = []
# edge_list = []
# temp_edge_list = []
# node_info_list = []
#
# for function in function_list:
# block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
#
# for block in block_list:
# node_list.append(block["addr"])
#
# # 获取基本块的反汇编指令
# disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
# node_info = []
# if disasm:
# for op in disasm:
# if op["type"] == "invalid":
# continue
# opcode, operands = extract_opcode_and_operands(op["disasm"])
# # 处理跳转指令
# if "jump" in op and op["jump"] != 0:
# temp_edge_list.append([block["addr"], op["jump"]])
# node_info.append([op["offset"], op["bytes"], opcode, op["jump"]])
# else:
# node_info.append([op["offset"], op["bytes"], opcode, None])
# node_info_list.append(node_info)
#
# # 完成 CFG 构建后, 检查并清理不存在的出边
# for temp_edge in temp_edge_list:
# if temp_edge[1] in node_list:
# edge_list.append(temp_edge)
#
# # 获取排序后元素的原始索引
# sorted_indices = [i for i, v in sorted(enumerate(node_list), key=lambda x: x[1])]
# # 根据这些索引重新排列
# node_list = [node_list[i] for i in sorted_indices]
# node_info_list = [node_info_list[i] for i in sorted_indices]
#
# return True, "二进制可执行文件解析成功", node_list, edge_list, node_info_list
# except Exception as e:
# return False, e, None, None, None

36
funNameGet.py Normal file
View File

@ -0,0 +1,36 @@
import concurrent.futures
import os
import r2pipe
from tqdm import tqdm
def get_fun_name_list(file_path):
# 读取csv文件
r2 = r2pipe.open(os.path.join(file_path), flags=['-2'])
r2.cmd('aaa')
r2.cmd('e arch=x86')
function_list = r2.cmdj("aflj")
fun_name_list = []
for function in function_list:
fun_name_list.append(function['name'])
r2.quit()
return fun_name_list
if __name__ == '__main__':
file_path = os.path.join('/mnt/d/bishe/dataset/sample_20230130_458')
file_list = os.listdir(file_path)
fun_name_set = {}
with concurrent.futures.ThreadPoolExecutor(max_workers=6) as executor:
future_to_args = {
executor.submit(get_fun_name_list, os.path.join(file_path, file_name)): file_name
for file_name in file_list
}
for future in tqdm(concurrent.futures.as_completed(future_to_args), total=len(future_to_args)):
fun_name_list = future.result()
for fun_name in fun_name_list:
if fun_name not in fun_name_set:
fun_name_set[fun_name] = 1
else:
fun_name_set[fun_name] += 1
print(fun_name_set)

188
ngram.py
View File

@ -1,3 +1,4 @@
import threading
from collections import defaultdict from collections import defaultdict
from tqdm import tqdm from tqdm import tqdm
import pandas as pd import pandas as pd
@ -101,6 +102,8 @@ def process_csv_file(csvfile, ngram_type, file_percent_filter, frequency_filter)
idx + 1, file_percent_filter, frequency_filter): start for start in idx + 1, file_percent_filter, frequency_filter): start for start in
range(0, len(dataframe['corpus'].values), 10000) range(0, len(dataframe['corpus'].values), 10000)
} }
for future in concurrent.futures.as_completed(future_to_args): for future in concurrent.futures.as_completed(future_to_args):
try: try:
sub_ngram_list, sub_filtered_ngram_list = future.result() sub_ngram_list, sub_filtered_ngram_list = future.result()
@ -122,11 +125,28 @@ def process_csv_file(csvfile, ngram_type, file_percent_filter, frequency_filter)
# Execute the parse_args() method # Execute the parse_args() method
def build_csv(ngram_list, filter_list, maxgrams, file_type):
ngramDicList = []
csv_file_header = ['ngram', 'count']
csv_file = os.path.join('./out', f'{file_type}-{maxgrams}-gram.csv')
for index in tqdm(range(len(ngram_list)), desc=f'Building {maxgrams}-gram csv'):
ngramDicList.append({
'ngram': ngram_list[index],
'count': filter_list[index]
})
try:
csv_file = open(csv_file, 'w')
except Exception as e:
print(f"Error opening {csv_file} for writing: {e}")
WriteCSV(csv_file, csv_file_header, ngramDicList)
csv_file.close()
if __name__ == '__main__': if __name__ == '__main__':
# Get user arguments # Get user arguments
malware_csvfile = os.path.join('./out/output_malware.csv') malware_csvfile = os.path.join('./out/output_malware.csv')
benign_csvfile = os.path.join('./out/output_benign.csv') benign_csvfile = os.path.join('./out/output_benign.csv')
maxgrams = 3 maxgrams_list = [3,2,1]
# Error check and exit if not a file # Error check and exit if not a file
if not (os.path.isfile(malware_csvfile) and os.path.isfile(benign_csvfile)): if not (os.path.isfile(malware_csvfile) and os.path.isfile(benign_csvfile)):
@ -136,100 +156,90 @@ if __name__ == '__main__':
# Read the csv file using pandas into data frame # Read the csv file using pandas into data frame
# Build a frequency list for ngrams # Build a frequency list for ngrams
filePercentFilter = 80 ## select ngrams present in x% of files for maxgrams in maxgrams_list:
frequencyFilter = 20 ## select ngrams with frequency greater than this value filePercentFilter = 80 ## select ngrams present in x% of files
frequencyFilter = 20 ## select ngrams with frequency greater than this value
malwareNgram = defaultdict(int) ## full list of ngrams in malware corpus malwareNgram = defaultdict(int) ## full list of ngrams in malware corpus
benignNgram = defaultdict(int) ## full list of ngrams in benign corpus benignNgram = defaultdict(int) ## full list of ngrams in benign corpus
filteredMalwareNgram = defaultdict(int) ## filtered list of ngrams from malware corpus filteredMalwareNgram = defaultdict(int) ## filtered list of ngrams from malware corpus
filteredBenignNgram = defaultdict(int) ## filtered list of ngrams from benign corpus filteredBenignNgram = defaultdict(int) ## filtered list of ngrams from benign corpus
## common list ngrams from both malware and benign corpus with relative frequency (benignFreq - malwareFreq) ## common list ngrams from both malware and benign corpus with relative frequency (benignFreq - malwareFreq)
filteredMergedNgram = defaultdict(int) filteredMergedNgram = defaultdict(int)
# run for only the maxgram provided, change lower value to 0 to run for all values [1..N] # run for only the maxgram provided, change lower value to 0 to run for all values [1..N]
for idx in range(maxgrams - 1, maxgrams): for idx in range(maxgrams - 1, maxgrams):
print(f"Computing {idx + 1}gram on files ...") print(f"Computing {idx + 1}gram on files ...")
print(f"CPU core {os.cpu_count()} on use") print(f"CPU core {os.cpu_count()} on use")
malwareNgram = [] malwareNgram = []
filteredMalwareNgram = [] filteredMalwareNgram = []
benignNgram = [] benignNgram = []
filteredBenignNgram = [] filteredBenignNgram = []
malwareNgram.clear() malwareNgram.clear()
filteredMalwareNgram.clear() filteredMalwareNgram.clear()
benignNgram.clear() benignNgram.clear()
filteredBenignNgram.clear() filteredBenignNgram.clear()
filteredMergedNgram.clear() filteredMergedNgram.clear()
# opcodes decoded from pe file in sequence is stored as corpus in the csv # opcodes decoded from pe file in sequence is stored as corpus in the csv
malwareNgram, filteredMalwareNgram = process_csv_file(malware_csvfile, 'malware', filePercentFilter, frequencyFilter) malwareNgram, filteredMalwareNgram = process_csv_file(malware_csvfile, 'malware', filePercentFilter,
frequencyFilter)
# build_csv(malwareNgram, filteredMalwareNgram, maxgrams, 'malware')
benignNgram, filteredBenignNgram = process_csv_file(benign_csvfile, 'benign', filePercentFilter,
frequencyFilter)
# build_csv(benignNgram, filteredBenignNgram, maxgrams, 'benign')
benignNgram, filteredBenignNgram = process_csv_file(benign_csvfile, 'benign', filePercentFilter, frequencyFilter)
# creates a sorted list of ngram tuples with their frequency for 1 .. maxgram # creates a sorted list of ngram tuples with their frequency for 1 .. maxgram
mergedList = list(set().union(filteredMalwareNgram.keys(), filteredBenignNgram.keys())) mergedList = list(set().union(filteredMalwareNgram.keys(), filteredBenignNgram.keys()))
## Now find the relative frequency b/w benign and malware files. = benign - malware ## Now find the relative frequency b/w benign and malware files. = benign - malware
## write this for cases where ngrams only present in one of the clases malware or benign ## write this for cases where ngrams only present in one of the clases malware or benign
## for reusability in case a union of classes is taken. ## for reusability in case a union of classes is taken.
for item in mergedList: for item in mergedList:
key = item # get the ngram only key = item # get the ngram only
if key in filteredBenignNgram: if key in filteredBenignNgram:
if key in filteredMalwareNgram: if key in filteredMalwareNgram:
filteredMergedNgram[key] = filteredBenignNgram[key] - filteredMalwareNgram[key] filteredMergedNgram[key] = filteredBenignNgram[key] - filteredMalwareNgram[key]
elif item in malwareNgram: elif item in malwareNgram:
filteredMergedNgram[key] = filteredBenignNgram[key] - malwareNgram[key] filteredMergedNgram[key] = filteredBenignNgram[key] - malwareNgram[key]
else: else:
filteredMergedNgram[key] = filteredBenignNgram[key] filteredMergedNgram[key] = filteredBenignNgram[key]
elif key in filteredMalwareNgram: elif key in filteredMalwareNgram:
if key in benignNgram: if key in benignNgram:
filteredMergedNgram[key] = benignNgram[key] - filteredMalwareNgram[key] filteredMergedNgram[key] = benignNgram[key] - filteredMalwareNgram[key]
else: else:
filteredMergedNgram[key] = filteredMalwareNgram[key] filteredMergedNgram[key] = filteredMalwareNgram[key]
print(f"Merged: {idx + 1}gramCnt={len(filteredMergedNgram.keys())}") print(f"Merged: {idx + 1}gramCnt={len(filteredMergedNgram.keys())}")
## get a sorted list of merged ngrams with relative frequencies # ## get a sorted list of merged ngrams with relative frequencies
sortedMergedNgramList = sorted(filteredMergedNgram.items(), key=lambda x: x[1]) sortedMergedNgramList = sorted(filteredMergedNgram.items(), key=lambda x: x[1])
# Plot a scatter graph - # write the final ngrams into a file for feature selection
# y values as relative frequency benign-malware AbsoluteNgramDictList = []
# x values as max frequency of a ngram max(malware, benign) RelativeNgramDictList = []
# color labels as 'a' + frequency % 26 for item in sortedMergedNgramList:
# size as frequency/max * 100 dictItem = {}
# hover name is ngram name key = item[0]
# titlestr = str(idx + 1) + "gram: Total samples(" + str(len(sortedMergedNgramList)) + ")" dictItem['ngram'] = key
# htmlfile = str(idx + 1) + "gram.html" dictItem['count'] = max(filteredMalwareNgram[key], filteredBenignNgram[key])
# hovername = [item[0] for item in sortedMergedNgramList] AbsoluteNgramDictList.append(dictItem)
# yval = [item[1]/1e10 for item in sortedMergedNgramList] RelativeNgramDictList.append({'ngram': item[0], 'count': item[1]})
# xval = [] csvfields = ['ngram', 'count']
# for key in hovername: AbsoluteCsvName = "./out/" + str(idx + 1) + "gram-absolute.csv"
# xval.append(max(filteredMalwareNgram[key], filteredBenignNgram[key])) RelativeCsvName = "./out/" + str(idx + 1) + "gram-relative.csv"
# colors = [chr(ord('a') + (value % 26)) for value in xval] print("*======================start write csv=======================================*")
# maxval = max(xval) try:
# sizeval = [(int((val / maxval) * 100) + 1) for val in xval] csvfile = open(AbsoluteCsvName, 'w')
# except Exception as err:
# fig = px.scatter(title=titlestr, y=yval, x=xval, color=colors, print(f"Error: writing csvfile {err}")
# size=sizeval, hover_name=hovername, log_x=True, WriteCSV(csvfile, csvfields, AbsoluteNgramDictList)
# labels={ csvfile.close()
# "x": "Absolute Frequency", try:
# "y": "Relative Frequency"}) csvfile = open(RelativeCsvName, 'w')
# fig.write_html(htmlfile) except Exception as err:
print(print(f"Error: writing csvfile {err}"))
# write the final ngrams into a file for feature selection WriteCSV(csvfile, csvfields, RelativeNgramDictList)
ngramDictList = [] csvfile.close()
for item in sortedMergedNgramList: print("*======================end write csv=======================================*")
dictItem = {}
key = item[0]
dictItem['ngram'] = key
dictItem['count'] = max(filteredMalwareNgram[key], filteredBenignNgram[key])
ngramDictList.append(dictItem)
csvfields = ['ngram', 'count']
csvname = "./out/"+str(idx + 1) + "gram.csv"
print("*======================start write csv=======================================*")
try:
csvfile = open(csvname, 'w')
except Exception as err:
print(f"Error: writing csvfile {err}")
WriteCSV(csvfile, csvfields, ngramDictList)
csvfile.close()