线程池版本

This commit is contained in:
huihun 2024-03-09 15:26:16 +08:00
parent 52b0cf6db3
commit 3f4bde2989
2 changed files with 168 additions and 144 deletions

View File

@ -6,12 +6,14 @@ from tqdm import tqdm
import r2pipe
import pandas as pd
def Opcode_to_csv(opcode_list, file_type):
logger.info("*======================start write==================================*")
csv_write(f'output_{file_type}.csv', opcode_list)
logger.info(f"done {done_file_num} files")
logger.info("*=================write to csv success==============================*")
def csv_write(file_name, data: list):
"""write data to csv"""
df = pd.DataFrame(data)
@ -19,6 +21,8 @@ def csv_write(file_name, data: list):
for i in range(0, len(df), chunksize):
df.iloc[i:i + chunksize].to_csv(f'./out/{file_name}', mode='a', header=False, index=False)
return True
def extract_opcode(disasm_text):
"""
从反汇编文本中提取操作码和操作数
@ -34,6 +38,7 @@ def extract_opcode(disasm_text):
return opcode
return ""
def get_graph_r2pipe(r2pipe_open, file_type):
# 获取基础块内的操作码序列
opcode_Sequence = []
@ -66,22 +71,21 @@ def get_graph_r2pipe(r2pipe_open, file_type):
if op["type"] == "invalid":
continue
block_opcode_Sequence.append(extract_opcode(op["opcode"]))
opcode_Sequence.append([file_type, file_type, len(block_opcode_Sequence), ' '.join(block_opcode_Sequence)])
opcode_Sequence.append(
[file_type, file_type, len(block_opcode_Sequence), ' '.join(block_opcode_Sequence)])
except:
print("Error: get function list failed")
return opcode_Sequence
if __name__ == '__main__':
logger = setup_logger('logger', 'log/opcode_benign.log')
logger = setup_logger('logger', './log/opcode_benign.log')
file_type = 'benign'
file_path = os.path.join('/mnt/d/bishe/dataset/train_benign')
file_list = os.listdir(file_path)[:10000]
done_file_num = 0
process_bar = tqdm(desc='Processing...', leave=True, total=len(file_list))
done_list = [['class', 'sub-class','size', 'corpus']]
done_list = [['class', 'sub-class', 'size', 'corpus']]
for file_name in file_list:
r2pipe_open = r2pipe.open(os.path.join(file_path, file_name), flags=['-2'])
r2pipe_open.cmd("aaa")
@ -94,12 +98,6 @@ if __name__ == '__main__':
else:
csv_write(f'output_{file_type}.csv', done_list)
# node_list = []
# edge_list = []
# temp_edge_list = []
@ -140,4 +138,4 @@ if __name__ == '__main__':
#
# return True, "二进制可执行文件解析成功", node_list, edge_list, node_info_list
# except Exception as e:
# return False, e, None, None, None
# return False, e, None, None, None

290
ngram.py
View File

@ -6,6 +6,11 @@ import csv
import argparse
import statistics
import plotly.express as px
import concurrent.futures
from functools import partial
import logging
import contextlib
###################################################################################################
## Program shall take two csv files of different classes - benign and malware
@ -13,54 +18,57 @@ import plotly.express as px
## of each computed ngram. delta_frequencies = (class1 - class2)
###################################################################################################
#--------------------------------------------------------------------------------------------------
# --------------------------------------------------------------------------------------------------
## Generate ngrams given the corpus and factor n
def generate_N_grams(corpus, n=1):
words = [word for word in corpus.split(" ")]
temp = zip(*[words[i:] for i in range(0, n)])
ngram = [' '.join(n) for n in temp]
return ngram
words = [word for word in corpus.split(" ")]
temp = zip(*[words[i:] for i in range(0, n)])
ngram = [' '.join(n) for n in temp]
return ngram
#--------------------------------------------------------------------------------------------------
# --------------------------------------------------------------------------------------------------
## Creates ngrams for the corpus List for given N and Filters it based on following criteria
# file count >= percent of Total corpus len (pecent in [1..100])
# Selects high frequency ngram until the mean value
# Returns both complete and filtered dictionary of ngrams
def filter_N_grams (corpusList, N, percent, filterFreq=0):
def filter_N_grams(corpusList, N, percent, filterFreq=0):
total = len(corpusList)
ngramDictionary = defaultdict(int)
ngramFileCount = defaultdict(int)
for idx in tqdm(range(0, total), ncols=100, desc="Computing ngrams"):
for idx in range(0, total):
opcodes = corpusList[idx]
if type(opcodes) is not str:
continue
for item in generate_N_grams(opcodes, N):
#compute frequency of all unique ngrams
# compute frequency of all unique ngrams
if len(opcodes) == 0:
continue
ngramDictionary[item] += 1
#compute ngram file count
# compute ngram file count
for item in ngramDictionary:
ngramFileCount[item] += 1
filteredNgramDictionary = defaultdict(int)
#Filter those ngrams which meet percent of Total files criteria
filterCnt = round(int((percent * total)/ 100), 0)
# Filter those ngrams which meet percent of Total files criteria
filterCnt = round(int((percent * total) / 100), 0)
for item in ngramFileCount:
if ngramFileCount[item] >= filterCnt:
#Add to filtered dictionary the item which meets file count criteria
# Add to filtered dictionary the item which meets file count criteria
filteredNgramDictionary[item] = ngramDictionary[item]
#Filter ngram with a minimum frequency
# Filter ngram with a minimum frequency
if (filterFreq):
for item in ngramDictionary:
for item in ngramDictionary:
if ngramDictionary[item] < filterFreq and item in filteredNgramDictionary:
#Remove the item which below the frequency threshold
# Remove the item which below the frequency threshold
filteredNgramDictionary.pop(item)
#print(f"Total ngrams:{len(ngramDictionary.items())} => filtered: {len(filteredNgramDictionary.items())}\n")
return [ngramDictionary, filteredNgramDictionary]
# print(f"Total ngrams:{len(ngramDictionary.items())} => filtered: {len(filteredNgramDictionary.items())}\n")
return ngramDictionary, filteredNgramDictionary
#--------------------------------------------------------------------------------------------------
# --------------------------------------------------------------------------------------------------
# Calculate a normalization factor for frequency values of class1 and class2
# For class which are high in frequency due their sample size, a normalization may required to be
# factored for correctly resizgin the frequencies of the small class set.
@ -68,142 +76,160 @@ def filter_N_grams (corpusList, N, percent, filterFreq=0):
def normalization_factor(class1, class2):
mean1 = statistics.mean(class1)
mean2 = statistics.mean(class2)
return mean1/mean2
return mean1 / mean2
#--------------------------------------------------------------------------------------------------
# --------------------------------------------------------------------------------------------------
# Write the data into the given csv file handle
def WriteCSV (file, csvFields, dataDictionary):
def WriteCSV(file, csvFields, dataDictionary):
writer = csv.DictWriter(file, fieldnames=csvFields)
writer.writeheader()
writer.writerows(dataDictionary)
#--------------------------------------------------------------------------------------------------
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def process_csv_file(csvfile, ngram_type, file_percent_filter, frequency_filter):
"""处理CSV文件并并行计算n-gram"""
print(f"start load csv file:{os.path.basename(csvfile)}")
dataframe = pd.read_csv(csvfile, encoding="utf8")
print(f"end load")
ngram_list = defaultdict(int)
filtered_ngram_list = defaultdict(int)
process_bar = tqdm(total=len(dataframe['corpus'].values), desc=f'Computing {ngram_type}-gram on files')
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor: # 调整线程池大小
future_to_args = {
executor.submit(filter_N_grams, dataframe['corpus'].values[start: start + 10000],
idx + 1, file_percent_filter, frequency_filter): start for start in
range(0, len(dataframe['corpus'].values), 10000)
}
for future in concurrent.futures.as_completed(future_to_args):
try:
sub_ngram_list, sub_filtered_ngram_list = future.result()
for i in [sub_ngram_list, ngram_list]:
for key, value in i.items():
ngram_list[key] += value
for i in [sub_filtered_ngram_list, filtered_ngram_list]:
for key, value in i.items():
filtered_ngram_list[key] += value
process_bar.update(10000) # 手动更新进度条
except Exception as exc:
logging.error(f"Error processing {idx + 1}-gram: {exc}")
return ngram_list, filtered_ngram_list
# --------------------------------------------------------------------------------------------------
# Execution starts here
# Add command line arguments
# CSV header: class, sub-class, size, corpus
parser = argparse.ArgumentParser(description="ngram analysis on a given corpus csv file.")
parser.add_argument('malware_csvfile', help='path to the malware corpus csv file')
parser.add_argument('benign_csvfile', help='path to the benign corpus csv file')
parser.add_argument('ngram', help='ngram to compute, higher value will be compute intensive')
# Execute the parse_args() method
if __name__ == '__main__':
# Get user arguments
malware_csvfile = os.path.join('./out/output_malware.csv')
benign_csvfile = os.path.join('./out/output_benign.csv')
maxgrams = 3
# Get user arguments
malware_csvfile = os.path.join('./out/output_malware.csv')
benign_csvfile = os.path.join('./out/output_benign.csv')
maxgrams = 3
# Error check and exit if not a file
if not (os.path.isfile(malware_csvfile) and os.path.isfile(benign_csvfile)):
print(f"Path should be csv file!")
exit(1)
# Error check and exit if not a file
if not (os.path.isfile(malware_csvfile) and os.path.isfile(benign_csvfile)):
print (f"Path should be csv file!")
exit(1)
# Read the csv file using pandas into data frame
# Read the csv file using pandas into data frame
try:
malwareDF = pd.read_csv(malware_csvfile, encoding = "utf8")
benignDF = pd.read_csv(benign_csvfile, encoding="utf8")
except Exception as error:
print(error)
# Build a frequency list for ngrams
filePercentFilter = 80 ## select ngrams present in x% of files
frequencyFilter = 20 ## select ngrams with frequency greater than this value
#Build a frequency list for ngrams
filePercentFilter = 80 ## select ngrams present in x% of files
frequencyFilter = 20 ## select ngrams with frequency greater than this value
malwareNgram = defaultdict(int) ## full list of ngrams in malware corpus
benignNgram = defaultdict(int) ## full list of ngrams in benign corpus
filteredMalwareNgram = defaultdict(int) ## filtered list of ngrams from malware corpus
filteredBenignNgram = defaultdict(int) ## filtered list of ngrams from benign corpus
malwareNgram = defaultdict(int) ## full list of ngrams in malware corpus
benignNgram = defaultdict(int) ## full list of ngrams in benign corpus
filteredMalwareNgram = defaultdict(int) ## filtered list of ngrams from malware corpus
filteredBenignNgram = defaultdict(int) ## filtered list of ngrams from benign corpus
## common list ngrams from both malware and benign corpus with relative frequency (benignFreq - malwareFreq)
filteredMergedNgram = defaultdict(int)
## common list ngrams from both malware and benign corpus with relative frequency (benignFreq - malwareFreq)
filteredMergedNgram = defaultdict(int)
# run for only the maxgram provided, change lower value to 0 to run for all values [1..N]
for idx in range(maxgrams - 1, maxgrams):
print(f"Computing {idx + 1}gram on files ...")
print(f"CPU core {os.cpu_count()} on use")
malwareNgram = []
filteredMalwareNgram = []
benignNgram = []
filteredBenignNgram = []
malwareNgram.clear()
filteredMalwareNgram.clear()
benignNgram.clear()
filteredBenignNgram.clear()
filteredMergedNgram.clear()
# opcodes decoded from pe file in sequence is stored as corpus in the csv
malwareNgram, filteredMalwareNgram = process_csv_file(malware_csvfile, 'malware', filePercentFilter, frequencyFilter)
#run for only the maxgram provided, change lower value to 0 to run for all values [1..N]
for idx in range(maxgrams-1, maxgrams):
print(f"Computing {idx+1}gram on files ...")
malwareNgram.clear()
filteredMalwareNgram.clear()
benignNgram.clear()
filteredBenignNgram.clear()
filteredMergedNgram.clear()
benignNgram, filteredBenignNgram = process_csv_file(benign_csvfile, 'benign', filePercentFilter, frequencyFilter)
#opcodes decoded from pe file in sequence is stored as corpus in the csv
[malwareNgram, filteredMalwareNgram] = filter_N_grams(malwareDF['corpus'].values, idx+1,
filePercentFilter, frequencyFilter)
# creates a sorted list of ngram tuples with their frequency for 1 .. maxgram
[benignNgram, filteredBenignNgram] = filter_N_grams(benignDF['corpus'].values, idx+1,
filePercentFilter, frequencyFilter)
mergedList = list(set().union(filteredMalwareNgram.keys(), filteredBenignNgram.keys()))
## Now find the relative frequency b/w benign and malware files. = benign - malware
## write this for cases where ngrams only present in one of the clases malware or benign
## for reusability in case a union of classes is taken.
for item in mergedList:
key = item # get the ngram only
if key in filteredBenignNgram:
if key in filteredMalwareNgram:
filteredMergedNgram[key] = filteredBenignNgram[key] - filteredMalwareNgram[key]
elif item in malwareNgram:
filteredMergedNgram[key] = filteredBenignNgram[key] - malwareNgram[key]
else:
filteredMergedNgram[key] = filteredBenignNgram[key]
elif key in filteredMalwareNgram:
if key in benignNgram:
filteredMergedNgram[key] = benignNgram[key] - filteredMalwareNgram[key]
else:
filteredMergedNgram[key] = filteredMalwareNgram[key]
#creates a sorted list of ngram tuples with their frequency for 1 .. maxgram
print(f"Malware: {idx+1}gramCnt={len(malwareNgram.items())}, filterenCnt={len(filteredMalwareNgram.items())}")
print(f"Benign: {idx+1}gramCnt={len(benignNgram.items())}, filterenCnt={len(filteredBenignNgram.items())}")
print(f"Merged: {idx + 1}gramCnt={len(filteredMergedNgram.keys())}")
## get a sorted list of merged ngrams with relative frequencies
sortedMergedNgramList = sorted(filteredMergedNgram.items(), key=lambda x: x[1])
## Make a intersection of filtered list between malware and benign ngrams
mergedList = list(set().union(filteredMalwareNgram.keys(), filteredBenignNgram.keys()))
# Plot a scatter graph -
# y values as relative frequency benign-malware
# x values as max frequency of a ngram max(malware, benign)
# color labels as 'a' + frequency % 26
# size as frequency/max * 100
# hover name is ngram name
# titlestr = str(idx + 1) + "gram: Total samples(" + str(len(sortedMergedNgramList)) + ")"
# htmlfile = str(idx + 1) + "gram.html"
# hovername = [item[0] for item in sortedMergedNgramList]
# yval = [item[1]/1e10 for item in sortedMergedNgramList]
# xval = []
# for key in hovername:
# xval.append(max(filteredMalwareNgram[key], filteredBenignNgram[key]))
# colors = [chr(ord('a') + (value % 26)) for value in xval]
# maxval = max(xval)
# sizeval = [(int((val / maxval) * 100) + 1) for val in xval]
#
# fig = px.scatter(title=titlestr, y=yval, x=xval, color=colors,
# size=sizeval, hover_name=hovername, log_x=True,
# labels={
# "x": "Absolute Frequency",
# "y": "Relative Frequency"})
# fig.write_html(htmlfile)
## Now find the relative frequency b/w benign and malware files. = benign - malware
## write this for cases where ngrams only present in one of the clases malware or benign
## for reusability in case a union of classes is taken.
for item in mergedList:
key = item #get the ngram only
if key in filteredBenignNgram:
if key in filteredMalwareNgram:
filteredMergedNgram[key] = filteredBenignNgram[key] - filteredMalwareNgram[key]
elif item in malwareNgram:
filteredMergedNgram[key] = filteredBenignNgram[key] - malwareNgram[key]
else:
filteredMergedNgram[key] = filteredBenignNgram[key]
elif key in filteredMalwareNgram:
if key in benignNgram:
filteredMergedNgram[key] = benignNgram[key] - filteredMalwareNgram[key]
else:
filteredMergedNgram[key] = filteredMalwareNgram[key]
print(f"Merged: {idx+1}gramCnt={len(filteredMergedNgram.keys())}")
## get a sorted list of merged ngrams with relative frequencies
sortedMergedNgramList = sorted(filteredMergedNgram.items(), key=lambda x: x[1])
#Plot a scatter graph -
# y values as relative frequency benign-malware
# x values as max frequency of a ngram max(malware, benign)
# color labels as 'a' + frequency % 26
# size as frequency/max * 100
# hover name is ngram name
titlestr = str(idx+1) + "gram: Total samples(" + str(len(sortedMergedNgramList)) + ")"
htmlfile = str (idx+1) +"gram.html"
hovername = [item[0] for item in sortedMergedNgramList]
yval = [item[1] for item in sortedMergedNgramList]
xval = []
for key in hovername:
xval.append(max(filteredMalwareNgram[key], filteredBenignNgram[key]))
colors = [chr(ord('a')+ (value %26)) for value in xval]
maxval = max(xval)
sizeval = [(int((val/maxval)*100)+1) for val in xval]
fig = px.scatter(title=titlestr, y=yval, x=xval, color=colors,
size=sizeval, hover_name=hovername, log_x=True,
labels = {
"x": "Absolute Frequency",
"y": "Relative Frequency"})
fig.show()
fig.write_html(htmlfile)
#write the final ngrams into a file for feature selection
ngramDictList = []
for item in sortedMergedNgramList:
dictItem = {}
key = item[0]
dictItem['ngram'] = key
dictItem['count'] = max(filteredMalwareNgram[key], filteredBenignNgram[key])
ngramDictList.append(dictItem)
csvfields = ['ngram', 'count']
csvname = str(idx+1) + "gram.csv"
try:
csvfile = open(csvname, 'w')
except Exception as err:
print(f"Error: writing csvfile {err}")
WriteCSV(csvfile, csvfields, ngramDictList)
csvfile.close()
# write the final ngrams into a file for feature selection
ngramDictList = []
for item in sortedMergedNgramList:
dictItem = {}
key = item[0]
dictItem['ngram'] = key
dictItem['count'] = max(filteredMalwareNgram[key], filteredBenignNgram[key])
ngramDictList.append(dictItem)
csvfields = ['ngram', 'count']
csvname = "./out/"+str(idx + 1) + "gram.csv"
print("*======================start write csv=======================================*")
try:
csvfile = open(csvname, 'w')
except Exception as err:
print(f"Error: writing csvfile {err}")
WriteCSV(csvfile, csvfields, ngramDictList)
csvfile.close()