线程池版本
This commit is contained in:
parent
52b0cf6db3
commit
3f4bde2989
22
OpcodeGet.py
22
OpcodeGet.py
@ -6,12 +6,14 @@ from tqdm import tqdm
|
|||||||
import r2pipe
|
import r2pipe
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
def Opcode_to_csv(opcode_list, file_type):
|
def Opcode_to_csv(opcode_list, file_type):
|
||||||
logger.info("*======================start write==================================*")
|
logger.info("*======================start write==================================*")
|
||||||
csv_write(f'output_{file_type}.csv', opcode_list)
|
csv_write(f'output_{file_type}.csv', opcode_list)
|
||||||
logger.info(f"done {done_file_num} files")
|
logger.info(f"done {done_file_num} files")
|
||||||
logger.info("*=================write to csv success==============================*")
|
logger.info("*=================write to csv success==============================*")
|
||||||
|
|
||||||
|
|
||||||
def csv_write(file_name, data: list):
|
def csv_write(file_name, data: list):
|
||||||
"""write data to csv"""
|
"""write data to csv"""
|
||||||
df = pd.DataFrame(data)
|
df = pd.DataFrame(data)
|
||||||
@ -19,6 +21,8 @@ def csv_write(file_name, data: list):
|
|||||||
for i in range(0, len(df), chunksize):
|
for i in range(0, len(df), chunksize):
|
||||||
df.iloc[i:i + chunksize].to_csv(f'./out/{file_name}', mode='a', header=False, index=False)
|
df.iloc[i:i + chunksize].to_csv(f'./out/{file_name}', mode='a', header=False, index=False)
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
def extract_opcode(disasm_text):
|
def extract_opcode(disasm_text):
|
||||||
"""
|
"""
|
||||||
从反汇编文本中提取操作码和操作数
|
从反汇编文本中提取操作码和操作数
|
||||||
@ -34,6 +38,7 @@ def extract_opcode(disasm_text):
|
|||||||
return opcode
|
return opcode
|
||||||
return ""
|
return ""
|
||||||
|
|
||||||
|
|
||||||
def get_graph_r2pipe(r2pipe_open, file_type):
|
def get_graph_r2pipe(r2pipe_open, file_type):
|
||||||
# 获取基础块内的操作码序列
|
# 获取基础块内的操作码序列
|
||||||
opcode_Sequence = []
|
opcode_Sequence = []
|
||||||
@ -66,22 +71,21 @@ def get_graph_r2pipe(r2pipe_open, file_type):
|
|||||||
if op["type"] == "invalid":
|
if op["type"] == "invalid":
|
||||||
continue
|
continue
|
||||||
block_opcode_Sequence.append(extract_opcode(op["opcode"]))
|
block_opcode_Sequence.append(extract_opcode(op["opcode"]))
|
||||||
opcode_Sequence.append([file_type, file_type, len(block_opcode_Sequence), ' '.join(block_opcode_Sequence)])
|
opcode_Sequence.append(
|
||||||
|
[file_type, file_type, len(block_opcode_Sequence), ' '.join(block_opcode_Sequence)])
|
||||||
except:
|
except:
|
||||||
print("Error: get function list failed")
|
print("Error: get function list failed")
|
||||||
return opcode_Sequence
|
return opcode_Sequence
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
logger = setup_logger('logger', 'log/opcode_benign.log')
|
logger = setup_logger('logger', './log/opcode_benign.log')
|
||||||
file_type = 'benign'
|
file_type = 'benign'
|
||||||
file_path = os.path.join('/mnt/d/bishe/dataset/train_benign')
|
file_path = os.path.join('/mnt/d/bishe/dataset/train_benign')
|
||||||
file_list = os.listdir(file_path)[:10000]
|
file_list = os.listdir(file_path)[:10000]
|
||||||
done_file_num = 0
|
done_file_num = 0
|
||||||
process_bar = tqdm(desc='Processing...', leave=True, total=len(file_list))
|
process_bar = tqdm(desc='Processing...', leave=True, total=len(file_list))
|
||||||
done_list = [['class', 'sub-class','size', 'corpus']]
|
done_list = [['class', 'sub-class', 'size', 'corpus']]
|
||||||
for file_name in file_list:
|
for file_name in file_list:
|
||||||
r2pipe_open = r2pipe.open(os.path.join(file_path, file_name), flags=['-2'])
|
r2pipe_open = r2pipe.open(os.path.join(file_path, file_name), flags=['-2'])
|
||||||
r2pipe_open.cmd("aaa")
|
r2pipe_open.cmd("aaa")
|
||||||
@ -94,12 +98,6 @@ if __name__ == '__main__':
|
|||||||
else:
|
else:
|
||||||
csv_write(f'output_{file_type}.csv', done_list)
|
csv_write(f'output_{file_type}.csv', done_list)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# node_list = []
|
# node_list = []
|
||||||
# edge_list = []
|
# edge_list = []
|
||||||
# temp_edge_list = []
|
# temp_edge_list = []
|
||||||
@ -140,4 +138,4 @@ if __name__ == '__main__':
|
|||||||
#
|
#
|
||||||
# return True, "二进制可执行文件解析成功", node_list, edge_list, node_info_list
|
# return True, "二进制可执行文件解析成功", node_list, edge_list, node_info_list
|
||||||
# except Exception as e:
|
# except Exception as e:
|
||||||
# return False, e, None, None, None
|
# return False, e, None, None, None
|
||||||
|
290
ngram.py
290
ngram.py
@ -6,6 +6,11 @@ import csv
|
|||||||
import argparse
|
import argparse
|
||||||
import statistics
|
import statistics
|
||||||
import plotly.express as px
|
import plotly.express as px
|
||||||
|
import concurrent.futures
|
||||||
|
from functools import partial
|
||||||
|
import logging
|
||||||
|
import contextlib
|
||||||
|
|
||||||
|
|
||||||
###################################################################################################
|
###################################################################################################
|
||||||
## Program shall take two csv files of different classes - benign and malware
|
## Program shall take two csv files of different classes - benign and malware
|
||||||
@ -13,54 +18,57 @@ import plotly.express as px
|
|||||||
## of each computed ngram. delta_frequencies = (class1 - class2)
|
## of each computed ngram. delta_frequencies = (class1 - class2)
|
||||||
###################################################################################################
|
###################################################################################################
|
||||||
|
|
||||||
#--------------------------------------------------------------------------------------------------
|
# --------------------------------------------------------------------------------------------------
|
||||||
## Generate ngrams given the corpus and factor n
|
## Generate ngrams given the corpus and factor n
|
||||||
def generate_N_grams(corpus, n=1):
|
def generate_N_grams(corpus, n=1):
|
||||||
|
words = [word for word in corpus.split(" ")]
|
||||||
|
temp = zip(*[words[i:] for i in range(0, n)])
|
||||||
|
ngram = [' '.join(n) for n in temp]
|
||||||
|
return ngram
|
||||||
|
|
||||||
words = [word for word in corpus.split(" ")]
|
|
||||||
temp = zip(*[words[i:] for i in range(0, n)])
|
|
||||||
ngram = [' '.join(n) for n in temp]
|
|
||||||
return ngram
|
|
||||||
|
|
||||||
#--------------------------------------------------------------------------------------------------
|
# --------------------------------------------------------------------------------------------------
|
||||||
## Creates ngrams for the corpus List for given N and Filters it based on following criteria
|
## Creates ngrams for the corpus List for given N and Filters it based on following criteria
|
||||||
# file count >= percent of Total corpus len (pecent in [1..100])
|
# file count >= percent of Total corpus len (pecent in [1..100])
|
||||||
# Selects high frequency ngram until the mean value
|
# Selects high frequency ngram until the mean value
|
||||||
# Returns both complete and filtered dictionary of ngrams
|
# Returns both complete and filtered dictionary of ngrams
|
||||||
def filter_N_grams (corpusList, N, percent, filterFreq=0):
|
def filter_N_grams(corpusList, N, percent, filterFreq=0):
|
||||||
total = len(corpusList)
|
total = len(corpusList)
|
||||||
ngramDictionary = defaultdict(int)
|
ngramDictionary = defaultdict(int)
|
||||||
ngramFileCount = defaultdict(int)
|
ngramFileCount = defaultdict(int)
|
||||||
for idx in tqdm(range(0, total), ncols=100, desc="Computing ngrams"):
|
for idx in range(0, total):
|
||||||
opcodes = corpusList[idx]
|
opcodes = corpusList[idx]
|
||||||
|
if type(opcodes) is not str:
|
||||||
|
continue
|
||||||
for item in generate_N_grams(opcodes, N):
|
for item in generate_N_grams(opcodes, N):
|
||||||
#compute frequency of all unique ngrams
|
# compute frequency of all unique ngrams
|
||||||
if len(opcodes) == 0:
|
if len(opcodes) == 0:
|
||||||
continue
|
continue
|
||||||
ngramDictionary[item] += 1
|
ngramDictionary[item] += 1
|
||||||
#compute ngram file count
|
# compute ngram file count
|
||||||
for item in ngramDictionary:
|
for item in ngramDictionary:
|
||||||
ngramFileCount[item] += 1
|
ngramFileCount[item] += 1
|
||||||
|
|
||||||
filteredNgramDictionary = defaultdict(int)
|
filteredNgramDictionary = defaultdict(int)
|
||||||
#Filter those ngrams which meet percent of Total files criteria
|
# Filter those ngrams which meet percent of Total files criteria
|
||||||
filterCnt = round(int((percent * total)/ 100), 0)
|
filterCnt = round(int((percent * total) / 100), 0)
|
||||||
for item in ngramFileCount:
|
for item in ngramFileCount:
|
||||||
if ngramFileCount[item] >= filterCnt:
|
if ngramFileCount[item] >= filterCnt:
|
||||||
#Add to filtered dictionary the item which meets file count criteria
|
# Add to filtered dictionary the item which meets file count criteria
|
||||||
filteredNgramDictionary[item] = ngramDictionary[item]
|
filteredNgramDictionary[item] = ngramDictionary[item]
|
||||||
|
|
||||||
#Filter ngram with a minimum frequency
|
# Filter ngram with a minimum frequency
|
||||||
if (filterFreq):
|
if (filterFreq):
|
||||||
for item in ngramDictionary:
|
for item in ngramDictionary:
|
||||||
if ngramDictionary[item] < filterFreq and item in filteredNgramDictionary:
|
if ngramDictionary[item] < filterFreq and item in filteredNgramDictionary:
|
||||||
#Remove the item which below the frequency threshold
|
# Remove the item which below the frequency threshold
|
||||||
filteredNgramDictionary.pop(item)
|
filteredNgramDictionary.pop(item)
|
||||||
|
|
||||||
#print(f"Total ngrams:{len(ngramDictionary.items())} => filtered: {len(filteredNgramDictionary.items())}\n")
|
# print(f"Total ngrams:{len(ngramDictionary.items())} => filtered: {len(filteredNgramDictionary.items())}\n")
|
||||||
return [ngramDictionary, filteredNgramDictionary]
|
return ngramDictionary, filteredNgramDictionary
|
||||||
|
|
||||||
#--------------------------------------------------------------------------------------------------
|
|
||||||
|
# --------------------------------------------------------------------------------------------------
|
||||||
# Calculate a normalization factor for frequency values of class1 and class2
|
# Calculate a normalization factor for frequency values of class1 and class2
|
||||||
# For class which are high in frequency due their sample size, a normalization may required to be
|
# For class which are high in frequency due their sample size, a normalization may required to be
|
||||||
# factored for correctly resizgin the frequencies of the small class set.
|
# factored for correctly resizgin the frequencies of the small class set.
|
||||||
@ -68,142 +76,160 @@ def filter_N_grams (corpusList, N, percent, filterFreq=0):
|
|||||||
def normalization_factor(class1, class2):
|
def normalization_factor(class1, class2):
|
||||||
mean1 = statistics.mean(class1)
|
mean1 = statistics.mean(class1)
|
||||||
mean2 = statistics.mean(class2)
|
mean2 = statistics.mean(class2)
|
||||||
return mean1/mean2
|
return mean1 / mean2
|
||||||
|
|
||||||
#--------------------------------------------------------------------------------------------------
|
|
||||||
|
# --------------------------------------------------------------------------------------------------
|
||||||
# Write the data into the given csv file handle
|
# Write the data into the given csv file handle
|
||||||
def WriteCSV (file, csvFields, dataDictionary):
|
def WriteCSV(file, csvFields, dataDictionary):
|
||||||
writer = csv.DictWriter(file, fieldnames=csvFields)
|
writer = csv.DictWriter(file, fieldnames=csvFields)
|
||||||
writer.writeheader()
|
writer.writeheader()
|
||||||
writer.writerows(dataDictionary)
|
writer.writerows(dataDictionary)
|
||||||
|
|
||||||
#--------------------------------------------------------------------------------------------------
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||||
|
def process_csv_file(csvfile, ngram_type, file_percent_filter, frequency_filter):
|
||||||
|
"""处理CSV文件并并行计算n-gram"""
|
||||||
|
print(f"start load csv file:{os.path.basename(csvfile)}")
|
||||||
|
dataframe = pd.read_csv(csvfile, encoding="utf8")
|
||||||
|
print(f"end load")
|
||||||
|
ngram_list = defaultdict(int)
|
||||||
|
filtered_ngram_list = defaultdict(int)
|
||||||
|
process_bar = tqdm(total=len(dataframe['corpus'].values), desc=f'Computing {ngram_type}-gram on files')
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor: # 调整线程池大小
|
||||||
|
future_to_args = {
|
||||||
|
executor.submit(filter_N_grams, dataframe['corpus'].values[start: start + 10000],
|
||||||
|
idx + 1, file_percent_filter, frequency_filter): start for start in
|
||||||
|
range(0, len(dataframe['corpus'].values), 10000)
|
||||||
|
}
|
||||||
|
for future in concurrent.futures.as_completed(future_to_args):
|
||||||
|
try:
|
||||||
|
sub_ngram_list, sub_filtered_ngram_list = future.result()
|
||||||
|
for i in [sub_ngram_list, ngram_list]:
|
||||||
|
for key, value in i.items():
|
||||||
|
ngram_list[key] += value
|
||||||
|
for i in [sub_filtered_ngram_list, filtered_ngram_list]:
|
||||||
|
for key, value in i.items():
|
||||||
|
filtered_ngram_list[key] += value
|
||||||
|
process_bar.update(10000) # 手动更新进度条
|
||||||
|
except Exception as exc:
|
||||||
|
logging.error(f"Error processing {idx + 1}-gram: {exc}")
|
||||||
|
return ngram_list, filtered_ngram_list
|
||||||
|
|
||||||
|
# --------------------------------------------------------------------------------------------------
|
||||||
# Execution starts here
|
# Execution starts here
|
||||||
# Add command line arguments
|
# Add command line arguments
|
||||||
# CSV header: class, sub-class, size, corpus
|
# CSV header: class, sub-class, size, corpus
|
||||||
parser = argparse.ArgumentParser(description="ngram analysis on a given corpus csv file.")
|
|
||||||
parser.add_argument('malware_csvfile', help='path to the malware corpus csv file')
|
|
||||||
parser.add_argument('benign_csvfile', help='path to the benign corpus csv file')
|
|
||||||
parser.add_argument('ngram', help='ngram to compute, higher value will be compute intensive')
|
|
||||||
|
|
||||||
# Execute the parse_args() method
|
# Execute the parse_args() method
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Get user arguments
|
||||||
|
malware_csvfile = os.path.join('./out/output_malware.csv')
|
||||||
|
benign_csvfile = os.path.join('./out/output_benign.csv')
|
||||||
|
maxgrams = 3
|
||||||
|
|
||||||
# Get user arguments
|
# Error check and exit if not a file
|
||||||
malware_csvfile = os.path.join('./out/output_malware.csv')
|
if not (os.path.isfile(malware_csvfile) and os.path.isfile(benign_csvfile)):
|
||||||
benign_csvfile = os.path.join('./out/output_benign.csv')
|
print(f"Path should be csv file!")
|
||||||
maxgrams = 3
|
exit(1)
|
||||||
|
|
||||||
# Error check and exit if not a file
|
# Read the csv file using pandas into data frame
|
||||||
if not (os.path.isfile(malware_csvfile) and os.path.isfile(benign_csvfile)):
|
|
||||||
print (f"Path should be csv file!")
|
|
||||||
exit(1)
|
|
||||||
|
|
||||||
# Read the csv file using pandas into data frame
|
# Build a frequency list for ngrams
|
||||||
try:
|
filePercentFilter = 80 ## select ngrams present in x% of files
|
||||||
malwareDF = pd.read_csv(malware_csvfile, encoding = "utf8")
|
frequencyFilter = 20 ## select ngrams with frequency greater than this value
|
||||||
benignDF = pd.read_csv(benign_csvfile, encoding="utf8")
|
|
||||||
except Exception as error:
|
|
||||||
print(error)
|
|
||||||
|
|
||||||
#Build a frequency list for ngrams
|
malwareNgram = defaultdict(int) ## full list of ngrams in malware corpus
|
||||||
filePercentFilter = 80 ## select ngrams present in x% of files
|
benignNgram = defaultdict(int) ## full list of ngrams in benign corpus
|
||||||
frequencyFilter = 20 ## select ngrams with frequency greater than this value
|
filteredMalwareNgram = defaultdict(int) ## filtered list of ngrams from malware corpus
|
||||||
|
filteredBenignNgram = defaultdict(int) ## filtered list of ngrams from benign corpus
|
||||||
|
|
||||||
malwareNgram = defaultdict(int) ## full list of ngrams in malware corpus
|
## common list ngrams from both malware and benign corpus with relative frequency (benignFreq - malwareFreq)
|
||||||
benignNgram = defaultdict(int) ## full list of ngrams in benign corpus
|
filteredMergedNgram = defaultdict(int)
|
||||||
filteredMalwareNgram = defaultdict(int) ## filtered list of ngrams from malware corpus
|
|
||||||
filteredBenignNgram = defaultdict(int) ## filtered list of ngrams from benign corpus
|
|
||||||
|
|
||||||
## common list ngrams from both malware and benign corpus with relative frequency (benignFreq - malwareFreq)
|
# run for only the maxgram provided, change lower value to 0 to run for all values [1..N]
|
||||||
filteredMergedNgram = defaultdict(int)
|
for idx in range(maxgrams - 1, maxgrams):
|
||||||
|
print(f"Computing {idx + 1}gram on files ...")
|
||||||
|
print(f"CPU core {os.cpu_count()} on use")
|
||||||
|
malwareNgram = []
|
||||||
|
filteredMalwareNgram = []
|
||||||
|
benignNgram = []
|
||||||
|
filteredBenignNgram = []
|
||||||
|
malwareNgram.clear()
|
||||||
|
filteredMalwareNgram.clear()
|
||||||
|
benignNgram.clear()
|
||||||
|
filteredBenignNgram.clear()
|
||||||
|
filteredMergedNgram.clear()
|
||||||
|
|
||||||
|
# opcodes decoded from pe file in sequence is stored as corpus in the csv
|
||||||
|
malwareNgram, filteredMalwareNgram = process_csv_file(malware_csvfile, 'malware', filePercentFilter, frequencyFilter)
|
||||||
|
|
||||||
#run for only the maxgram provided, change lower value to 0 to run for all values [1..N]
|
benignNgram, filteredBenignNgram = process_csv_file(benign_csvfile, 'benign', filePercentFilter, frequencyFilter)
|
||||||
for idx in range(maxgrams-1, maxgrams):
|
|
||||||
print(f"Computing {idx+1}gram on files ...")
|
|
||||||
malwareNgram.clear()
|
|
||||||
filteredMalwareNgram.clear()
|
|
||||||
benignNgram.clear()
|
|
||||||
filteredBenignNgram.clear()
|
|
||||||
filteredMergedNgram.clear()
|
|
||||||
|
|
||||||
#opcodes decoded from pe file in sequence is stored as corpus in the csv
|
# creates a sorted list of ngram tuples with their frequency for 1 .. maxgram
|
||||||
[malwareNgram, filteredMalwareNgram] = filter_N_grams(malwareDF['corpus'].values, idx+1,
|
|
||||||
filePercentFilter, frequencyFilter)
|
|
||||||
|
|
||||||
[benignNgram, filteredBenignNgram] = filter_N_grams(benignDF['corpus'].values, idx+1,
|
mergedList = list(set().union(filteredMalwareNgram.keys(), filteredBenignNgram.keys()))
|
||||||
filePercentFilter, frequencyFilter)
|
## Now find the relative frequency b/w benign and malware files. = benign - malware
|
||||||
|
## write this for cases where ngrams only present in one of the clases malware or benign
|
||||||
|
## for reusability in case a union of classes is taken.
|
||||||
|
for item in mergedList:
|
||||||
|
key = item # get the ngram only
|
||||||
|
if key in filteredBenignNgram:
|
||||||
|
if key in filteredMalwareNgram:
|
||||||
|
filteredMergedNgram[key] = filteredBenignNgram[key] - filteredMalwareNgram[key]
|
||||||
|
elif item in malwareNgram:
|
||||||
|
filteredMergedNgram[key] = filteredBenignNgram[key] - malwareNgram[key]
|
||||||
|
else:
|
||||||
|
filteredMergedNgram[key] = filteredBenignNgram[key]
|
||||||
|
elif key in filteredMalwareNgram:
|
||||||
|
if key in benignNgram:
|
||||||
|
filteredMergedNgram[key] = benignNgram[key] - filteredMalwareNgram[key]
|
||||||
|
else:
|
||||||
|
filteredMergedNgram[key] = filteredMalwareNgram[key]
|
||||||
|
|
||||||
#creates a sorted list of ngram tuples with their frequency for 1 .. maxgram
|
print(f"Merged: {idx + 1}gramCnt={len(filteredMergedNgram.keys())}")
|
||||||
print(f"Malware: {idx+1}gramCnt={len(malwareNgram.items())}, filterenCnt={len(filteredMalwareNgram.items())}")
|
## get a sorted list of merged ngrams with relative frequencies
|
||||||
print(f"Benign: {idx+1}gramCnt={len(benignNgram.items())}, filterenCnt={len(filteredBenignNgram.items())}")
|
sortedMergedNgramList = sorted(filteredMergedNgram.items(), key=lambda x: x[1])
|
||||||
|
|
||||||
## Make a intersection of filtered list between malware and benign ngrams
|
# Plot a scatter graph -
|
||||||
mergedList = list(set().union(filteredMalwareNgram.keys(), filteredBenignNgram.keys()))
|
# y values as relative frequency benign-malware
|
||||||
|
# x values as max frequency of a ngram max(malware, benign)
|
||||||
|
# color labels as 'a' + frequency % 26
|
||||||
|
# size as frequency/max * 100
|
||||||
|
# hover name is ngram name
|
||||||
|
# titlestr = str(idx + 1) + "gram: Total samples(" + str(len(sortedMergedNgramList)) + ")"
|
||||||
|
# htmlfile = str(idx + 1) + "gram.html"
|
||||||
|
# hovername = [item[0] for item in sortedMergedNgramList]
|
||||||
|
# yval = [item[1]/1e10 for item in sortedMergedNgramList]
|
||||||
|
# xval = []
|
||||||
|
# for key in hovername:
|
||||||
|
# xval.append(max(filteredMalwareNgram[key], filteredBenignNgram[key]))
|
||||||
|
# colors = [chr(ord('a') + (value % 26)) for value in xval]
|
||||||
|
# maxval = max(xval)
|
||||||
|
# sizeval = [(int((val / maxval) * 100) + 1) for val in xval]
|
||||||
|
#
|
||||||
|
# fig = px.scatter(title=titlestr, y=yval, x=xval, color=colors,
|
||||||
|
# size=sizeval, hover_name=hovername, log_x=True,
|
||||||
|
# labels={
|
||||||
|
# "x": "Absolute Frequency",
|
||||||
|
# "y": "Relative Frequency"})
|
||||||
|
# fig.write_html(htmlfile)
|
||||||
|
|
||||||
## Now find the relative frequency b/w benign and malware files. = benign - malware
|
# write the final ngrams into a file for feature selection
|
||||||
## write this for cases where ngrams only present in one of the clases malware or benign
|
ngramDictList = []
|
||||||
## for reusability in case a union of classes is taken.
|
for item in sortedMergedNgramList:
|
||||||
for item in mergedList:
|
dictItem = {}
|
||||||
key = item #get the ngram only
|
key = item[0]
|
||||||
if key in filteredBenignNgram:
|
dictItem['ngram'] = key
|
||||||
if key in filteredMalwareNgram:
|
dictItem['count'] = max(filteredMalwareNgram[key], filteredBenignNgram[key])
|
||||||
filteredMergedNgram[key] = filteredBenignNgram[key] - filteredMalwareNgram[key]
|
ngramDictList.append(dictItem)
|
||||||
elif item in malwareNgram:
|
|
||||||
filteredMergedNgram[key] = filteredBenignNgram[key] - malwareNgram[key]
|
|
||||||
else:
|
|
||||||
filteredMergedNgram[key] = filteredBenignNgram[key]
|
|
||||||
elif key in filteredMalwareNgram:
|
|
||||||
if key in benignNgram:
|
|
||||||
filteredMergedNgram[key] = benignNgram[key] - filteredMalwareNgram[key]
|
|
||||||
else:
|
|
||||||
filteredMergedNgram[key] = filteredMalwareNgram[key]
|
|
||||||
|
|
||||||
print(f"Merged: {idx+1}gramCnt={len(filteredMergedNgram.keys())}")
|
|
||||||
## get a sorted list of merged ngrams with relative frequencies
|
|
||||||
sortedMergedNgramList = sorted(filteredMergedNgram.items(), key=lambda x: x[1])
|
|
||||||
|
|
||||||
#Plot a scatter graph -
|
|
||||||
# y values as relative frequency benign-malware
|
|
||||||
# x values as max frequency of a ngram max(malware, benign)
|
|
||||||
# color labels as 'a' + frequency % 26
|
|
||||||
# size as frequency/max * 100
|
|
||||||
# hover name is ngram name
|
|
||||||
titlestr = str(idx+1) + "gram: Total samples(" + str(len(sortedMergedNgramList)) + ")"
|
|
||||||
htmlfile = str (idx+1) +"gram.html"
|
|
||||||
hovername = [item[0] for item in sortedMergedNgramList]
|
|
||||||
yval = [item[1] for item in sortedMergedNgramList]
|
|
||||||
xval = []
|
|
||||||
for key in hovername:
|
|
||||||
xval.append(max(filteredMalwareNgram[key], filteredBenignNgram[key]))
|
|
||||||
colors = [chr(ord('a')+ (value %26)) for value in xval]
|
|
||||||
maxval = max(xval)
|
|
||||||
sizeval = [(int((val/maxval)*100)+1) for val in xval]
|
|
||||||
|
|
||||||
fig = px.scatter(title=titlestr, y=yval, x=xval, color=colors,
|
|
||||||
size=sizeval, hover_name=hovername, log_x=True,
|
|
||||||
labels = {
|
|
||||||
"x": "Absolute Frequency",
|
|
||||||
"y": "Relative Frequency"})
|
|
||||||
fig.show()
|
|
||||||
fig.write_html(htmlfile)
|
|
||||||
|
|
||||||
#write the final ngrams into a file for feature selection
|
|
||||||
ngramDictList = []
|
|
||||||
for item in sortedMergedNgramList:
|
|
||||||
dictItem = {}
|
|
||||||
key = item[0]
|
|
||||||
dictItem['ngram'] = key
|
|
||||||
dictItem['count'] = max(filteredMalwareNgram[key], filteredBenignNgram[key])
|
|
||||||
ngramDictList.append(dictItem)
|
|
||||||
|
|
||||||
csvfields = ['ngram', 'count']
|
|
||||||
csvname = str(idx+1) + "gram.csv"
|
|
||||||
try:
|
|
||||||
csvfile = open(csvname, 'w')
|
|
||||||
except Exception as err:
|
|
||||||
print(f"Error: writing csvfile {err}")
|
|
||||||
WriteCSV(csvfile, csvfields, ngramDictList)
|
|
||||||
csvfile.close()
|
|
||||||
|
|
||||||
|
csvfields = ['ngram', 'count']
|
||||||
|
csvname = "./out/"+str(idx + 1) + "gram.csv"
|
||||||
|
print("*======================start write csv=======================================*")
|
||||||
|
try:
|
||||||
|
csvfile = open(csvname, 'w')
|
||||||
|
except Exception as err:
|
||||||
|
print(f"Error: writing csvfile {err}")
|
||||||
|
WriteCSV(csvfile, csvfields, ngramDictList)
|
||||||
|
csvfile.close()
|
||||||
|
Loading…
Reference in New Issue
Block a user