asm_to_csv/funNameGet.py

57 lines
2.1 KiB
Python
Raw Normal View History

2024-03-13 15:09:12 +08:00
import concurrent.futures
import os
import r2pipe
from tqdm import tqdm
2024-03-15 12:57:59 +08:00
import pandas as pd
2024-03-13 15:09:12 +08:00
def get_fun_name_list(file_path):
# 读取csv文件
fun_name_list = []
2024-03-15 12:57:59 +08:00
try:
r2 = r2pipe.open(os.path.join(file_path), flags=['-2'])
r2.cmd('aaa')
r2.cmd('e arch=x86')
function_list = r2.cmdj("aflj")
for function in function_list:
fun_name_list.append(function['name'])
except Exception as err:
print(f'error at {file_path} , {err}')
2024-03-13 15:09:12 +08:00
r2.quit()
return fun_name_list
2024-03-15 12:57:59 +08:00
def fun_name_count():
2024-03-13 15:09:12 +08:00
file_path = os.path.join('/mnt/d/bishe/dataset/sample_20230130_458')
2024-03-15 12:57:59 +08:00
bengin_file_path = os.path.join('/mnt/d/bishe/dataset/train_benign')
file_list = [os.path.join(file_path, file_name) for file_name in os.listdir(file_path)]
file_list.extend([os.path.join(bengin_file_path, file_name) for file_name in os.listdir(bengin_file_path)])
2024-03-13 15:09:12 +08:00
fun_name_set = {}
2024-03-15 12:57:59 +08:00
with concurrent.futures.ThreadPoolExecutor(max_workers=12) as executor:
2024-03-13 15:09:12 +08:00
future_to_args = {
2024-03-15 12:57:59 +08:00
executor.submit(get_fun_name_list, file_name): file_name
2024-03-13 15:09:12 +08:00
for file_name in file_list
}
for future in tqdm(concurrent.futures.as_completed(future_to_args), total=len(future_to_args)):
fun_name_list = future.result()
2024-03-15 12:57:59 +08:00
if fun_name_list:
for fun_name in fun_name_list:
if fun_name not in fun_name_set:
fun_name_set[fun_name] = 1
else:
fun_name_set[fun_name] += 1
pd.DataFrame(fun_name_set.items(), columns=['fun_name', 'count']).to_csv('./out/fun_name.csv', index=False, mode='a')
def fun_name_sort():
fun_name_df = pd.read_csv('./out/fun_name.csv')
# 去除fun_name中fun_name列中的局部函数
for item in ['fcn.', 'loc.', 'main', 'entr']:
fun_name_df = fun_name_df[fun_name_df['fun_name'].apply(lambda x: item not in x and item not in x)]
fun_name_df = fun_name_df.sort_values(by='count', ascending=False)[:10000]
fun_name_df.to_csv('fun_name_sort.csv', index=False)
if __name__ == '__main__':
fun_name_count()
fun_name_sort()