asm_to_csv/ngram.py

236 lines
11 KiB
Python
Raw Normal View History

2024-03-07 15:08:07 +08:00
from collections import defaultdict
from tqdm import tqdm
import pandas as pd
import os
import csv
import argparse
import statistics
import plotly.express as px
2024-03-09 15:26:16 +08:00
import concurrent.futures
from functools import partial
import logging
import contextlib
2024-03-07 15:08:07 +08:00
###################################################################################################
## Program shall take two csv files of different classes - benign and malware
## It will compute ngrams for each of the classes seperately and find the delta frequencies
## of each computed ngram. delta_frequencies = (class1 - class2)
###################################################################################################
2024-03-09 15:26:16 +08:00
# --------------------------------------------------------------------------------------------------
2024-03-07 15:08:07 +08:00
## Generate ngrams given the corpus and factor n
def generate_N_grams(corpus, n=1):
2024-03-09 15:26:16 +08:00
words = [word for word in corpus.split(" ")]
temp = zip(*[words[i:] for i in range(0, n)])
ngram = [' '.join(n) for n in temp]
return ngram
2024-03-07 15:08:07 +08:00
2024-03-09 15:26:16 +08:00
# --------------------------------------------------------------------------------------------------
2024-03-07 15:08:07 +08:00
## Creates ngrams for the corpus List for given N and Filters it based on following criteria
# file count >= percent of Total corpus len (pecent in [1..100])
# Selects high frequency ngram until the mean value
# Returns both complete and filtered dictionary of ngrams
2024-03-09 15:26:16 +08:00
def filter_N_grams(corpusList, N, percent, filterFreq=0):
2024-03-07 15:08:07 +08:00
total = len(corpusList)
ngramDictionary = defaultdict(int)
ngramFileCount = defaultdict(int)
2024-03-09 15:26:16 +08:00
for idx in range(0, total):
2024-03-07 15:08:07 +08:00
opcodes = corpusList[idx]
2024-03-09 15:26:16 +08:00
if type(opcodes) is not str:
continue
2024-03-07 15:08:07 +08:00
for item in generate_N_grams(opcodes, N):
2024-03-09 15:26:16 +08:00
# compute frequency of all unique ngrams
2024-03-07 15:08:07 +08:00
if len(opcodes) == 0:
continue
ngramDictionary[item] += 1
2024-03-09 15:26:16 +08:00
# compute ngram file count
2024-03-07 15:08:07 +08:00
for item in ngramDictionary:
ngramFileCount[item] += 1
filteredNgramDictionary = defaultdict(int)
2024-03-09 15:26:16 +08:00
# Filter those ngrams which meet percent of Total files criteria
filterCnt = round(int((percent * total) / 100), 0)
2024-03-07 15:08:07 +08:00
for item in ngramFileCount:
if ngramFileCount[item] >= filterCnt:
2024-03-09 15:26:16 +08:00
# Add to filtered dictionary the item which meets file count criteria
2024-03-07 15:08:07 +08:00
filteredNgramDictionary[item] = ngramDictionary[item]
2024-03-09 15:26:16 +08:00
# Filter ngram with a minimum frequency
2024-03-07 15:08:07 +08:00
if (filterFreq):
2024-03-09 15:26:16 +08:00
for item in ngramDictionary:
2024-03-07 15:08:07 +08:00
if ngramDictionary[item] < filterFreq and item in filteredNgramDictionary:
2024-03-09 15:26:16 +08:00
# Remove the item which below the frequency threshold
2024-03-07 15:08:07 +08:00
filteredNgramDictionary.pop(item)
2024-03-09 15:26:16 +08:00
# print(f"Total ngrams:{len(ngramDictionary.items())} => filtered: {len(filteredNgramDictionary.items())}\n")
return ngramDictionary, filteredNgramDictionary
2024-03-07 15:08:07 +08:00
2024-03-09 15:26:16 +08:00
# --------------------------------------------------------------------------------------------------
2024-03-07 15:08:07 +08:00
# Calculate a normalization factor for frequency values of class1 and class2
# For class which are high in frequency due their sample size, a normalization may required to be
# factored for correctly resizgin the frequencies of the small class set.
# input list of frequencies of class1 and class 2
def normalization_factor(class1, class2):
mean1 = statistics.mean(class1)
mean2 = statistics.mean(class2)
2024-03-09 15:26:16 +08:00
return mean1 / mean2
2024-03-07 15:08:07 +08:00
2024-03-09 15:26:16 +08:00
# --------------------------------------------------------------------------------------------------
2024-03-07 15:08:07 +08:00
# Write the data into the given csv file handle
2024-03-09 15:26:16 +08:00
def WriteCSV(file, csvFields, dataDictionary):
2024-03-07 15:08:07 +08:00
writer = csv.DictWriter(file, fieldnames=csvFields)
writer.writeheader()
writer.writerows(dataDictionary)
2024-03-09 15:26:16 +08:00
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def process_csv_file(csvfile, ngram_type, file_percent_filter, frequency_filter):
"""处理CSV文件并并行计算n-gram"""
print(f"start load csv file:{os.path.basename(csvfile)}")
dataframe = pd.read_csv(csvfile, encoding="utf8")
print(f"end load")
ngram_list = defaultdict(int)
filtered_ngram_list = defaultdict(int)
process_bar = tqdm(total=len(dataframe['corpus'].values), desc=f'Computing {ngram_type}-gram on files')
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor: # 调整线程池大小
future_to_args = {
executor.submit(filter_N_grams, dataframe['corpus'].values[start: start + 10000],
idx + 1, file_percent_filter, frequency_filter): start for start in
range(0, len(dataframe['corpus'].values), 10000)
}
for future in concurrent.futures.as_completed(future_to_args):
try:
sub_ngram_list, sub_filtered_ngram_list = future.result()
for i in [sub_ngram_list, ngram_list]:
for key, value in i.items():
ngram_list[key] += value
for i in [sub_filtered_ngram_list, filtered_ngram_list]:
for key, value in i.items():
filtered_ngram_list[key] += value
process_bar.update(10000) # 手动更新进度条
except Exception as exc:
logging.error(f"Error processing {idx + 1}-gram: {exc}")
return ngram_list, filtered_ngram_list
# --------------------------------------------------------------------------------------------------
2024-03-07 15:08:07 +08:00
# Execution starts here
# Add command line arguments
# CSV header: class, sub-class, size, corpus
# Execute the parse_args() method
2024-03-09 15:26:16 +08:00
if __name__ == '__main__':
# Get user arguments
malware_csvfile = os.path.join('./out/output_malware.csv')
benign_csvfile = os.path.join('./out/output_benign.csv')
maxgrams = 3
# Error check and exit if not a file
if not (os.path.isfile(malware_csvfile) and os.path.isfile(benign_csvfile)):
print(f"Path should be csv file!")
exit(1)
# Read the csv file using pandas into data frame
# Build a frequency list for ngrams
filePercentFilter = 80 ## select ngrams present in x% of files
frequencyFilter = 20 ## select ngrams with frequency greater than this value
malwareNgram = defaultdict(int) ## full list of ngrams in malware corpus
benignNgram = defaultdict(int) ## full list of ngrams in benign corpus
filteredMalwareNgram = defaultdict(int) ## filtered list of ngrams from malware corpus
filteredBenignNgram = defaultdict(int) ## filtered list of ngrams from benign corpus
## common list ngrams from both malware and benign corpus with relative frequency (benignFreq - malwareFreq)
filteredMergedNgram = defaultdict(int)
# run for only the maxgram provided, change lower value to 0 to run for all values [1..N]
for idx in range(maxgrams - 1, maxgrams):
print(f"Computing {idx + 1}gram on files ...")
print(f"CPU core {os.cpu_count()} on use")
malwareNgram = []
filteredMalwareNgram = []
benignNgram = []
filteredBenignNgram = []
malwareNgram.clear()
filteredMalwareNgram.clear()
benignNgram.clear()
filteredBenignNgram.clear()
filteredMergedNgram.clear()
# opcodes decoded from pe file in sequence is stored as corpus in the csv
malwareNgram, filteredMalwareNgram = process_csv_file(malware_csvfile, 'malware', filePercentFilter, frequencyFilter)
benignNgram, filteredBenignNgram = process_csv_file(benign_csvfile, 'benign', filePercentFilter, frequencyFilter)
# creates a sorted list of ngram tuples with their frequency for 1 .. maxgram
mergedList = list(set().union(filteredMalwareNgram.keys(), filteredBenignNgram.keys()))
## Now find the relative frequency b/w benign and malware files. = benign - malware
## write this for cases where ngrams only present in one of the clases malware or benign
## for reusability in case a union of classes is taken.
for item in mergedList:
key = item # get the ngram only
if key in filteredBenignNgram:
if key in filteredMalwareNgram:
filteredMergedNgram[key] = filteredBenignNgram[key] - filteredMalwareNgram[key]
elif item in malwareNgram:
filteredMergedNgram[key] = filteredBenignNgram[key] - malwareNgram[key]
else:
filteredMergedNgram[key] = filteredBenignNgram[key]
elif key in filteredMalwareNgram:
if key in benignNgram:
filteredMergedNgram[key] = benignNgram[key] - filteredMalwareNgram[key]
else:
filteredMergedNgram[key] = filteredMalwareNgram[key]
print(f"Merged: {idx + 1}gramCnt={len(filteredMergedNgram.keys())}")
## get a sorted list of merged ngrams with relative frequencies
sortedMergedNgramList = sorted(filteredMergedNgram.items(), key=lambda x: x[1])
# Plot a scatter graph -
# y values as relative frequency benign-malware
# x values as max frequency of a ngram max(malware, benign)
# color labels as 'a' + frequency % 26
# size as frequency/max * 100
# hover name is ngram name
# titlestr = str(idx + 1) + "gram: Total samples(" + str(len(sortedMergedNgramList)) + ")"
# htmlfile = str(idx + 1) + "gram.html"
# hovername = [item[0] for item in sortedMergedNgramList]
# yval = [item[1]/1e10 for item in sortedMergedNgramList]
# xval = []
# for key in hovername:
# xval.append(max(filteredMalwareNgram[key], filteredBenignNgram[key]))
# colors = [chr(ord('a') + (value % 26)) for value in xval]
# maxval = max(xval)
# sizeval = [(int((val / maxval) * 100) + 1) for val in xval]
#
# fig = px.scatter(title=titlestr, y=yval, x=xval, color=colors,
# size=sizeval, hover_name=hovername, log_x=True,
# labels={
# "x": "Absolute Frequency",
# "y": "Relative Frequency"})
# fig.write_html(htmlfile)
# write the final ngrams into a file for feature selection
ngramDictList = []
for item in sortedMergedNgramList:
dictItem = {}
key = item[0]
dictItem['ngram'] = key
dictItem['count'] = max(filteredMalwareNgram[key], filteredBenignNgram[key])
ngramDictList.append(dictItem)
csvfields = ['ngram', 'count']
csvname = "./out/"+str(idx + 1) + "gram.csv"
print("*======================start write csv=======================================*")
try:
csvfile = open(csvname, 'w')
except Exception as err:
print(f"Error: writing csvfile {err}")
WriteCSV(csvfile, csvfields, ngramDictList)
csvfile.close()