MalGraph/samples/PreProcess.py
2024-01-26 13:10:33 +08:00

81 lines
3.5 KiB
Python

import json
import os
import sys
import torch
from torch_geometric.data import Data
from tqdm import tqdm
sys.path.append(os.path.dirname(sys.path[0]))
from src.utils.Vocabulary import Vocab
def parse_json_list_2_pyg_object(jsonl_file: str, label: int, vocab: Vocab, save_path: str, file_type: str):
# def parse_json_list_2_pyg_object(jsonl_file: str):
train_type = ['train', 'valid', 'test']
index = 0
file_index = 0
type_index = 0
valid_flag = True
test_flag = True
file_len = len(os.listdir(jsonl_file))
for file in tqdm(os.listdir(jsonl_file)):
if index >= file_len * 0.8 and valid_flag:
type_index += 1
valid_flag = False
file_index = 0
print("make valid set")
elif index >= file_len * 0.9 and test_flag:
type_index += 1
test_flag = False
file_index = 0
print("make test set")
j = json_to_pt(file=jsonl_file + file, label=label, vocab=vocab, save_path=save_path, file_type=file_type, train_type=train_type[type_index], index=file_index)
index += 1
file_index += 1
def json_to_pt(file: str, label: int, vocab: Vocab, save_path: str, file_type: str, train_type: str, index: int):
if not os.path.exists(save_path+f"{train_type}_{file_type}/"):
os.mkdir(save_path+f"{train_type}_{file_type}/")
with open(file, "r", encoding="utf-8") as item:
line = item.readline()
item = json.loads(line)
item_hash = item['hash']
acfg_list = []
for one_acfg in item['acfg_list']: # list of dict of acfg
block_features = one_acfg['block_features']
block_edges = one_acfg['block_edges']
one_acfg_data = Data(x=torch.tensor(block_features, dtype=torch.float),
edge_index=torch.tensor(block_edges, dtype=torch.long))
acfg_list.append(one_acfg_data)
item_function_names = item['function_names']
item_function_edges = item['function_edges']
local_function_name_list = item_function_names[:len(acfg_list)]
assert len(acfg_list) == len(
local_function_name_list), "The length of ACFG_List should be equal to the length of Local_Function_List"
external_function_name_list = item_function_names[len(acfg_list):]
external_function_index_list = [vocab[f_name] for f_name in external_function_name_list]
torch.save(Data(hash=item_hash, local_acfgs=acfg_list, external_list=external_function_index_list,
function_edges=item_function_edges, targets=label),
save_path + "{}_{}/{}_{}.pt".format(train_type, file_type, file_type, index))
return True
if __name__ == '__main__':
malware_json_path = "/home/king/python/data/jsonl/infected_jsonl/"
benign_json_path = "/home/king/python/data/jsonl/refind_jsonl/"
train_vocab_file = "/home/king/python/data/processed_dataset/train_external_function_name_vocab.jsonl"
save_vocab_file = "/home/king/python/data/processed_dataset/DatasetJSON_remake/"
file_type = ["malware", "benign"]
max_vocab_size = 10000
vocabulary = Vocab(freq_file=train_vocab_file, max_vocab_size=max_vocab_size)
parse_json_list_2_pyg_object(jsonl_file=malware_json_path, label=1, vocab=vocabulary, save_path=save_vocab_file,
file_type=file_type[0])
parse_json_list_2_pyg_object(jsonl_file=benign_json_path, label=0, vocab=vocabulary, save_path=save_vocab_file,
file_type=file_type[1])