MalGraph/samples/PreProcess.py
2022-01-10 16:39:55 +08:00

41 lines
1.9 KiB
Python

import json
import torch
from torch_geometric.data import Data
from tqdm import tqdm
from utils.Vocabulary import Vocab
def parse_json_list_2_pyg_object(jsonl_file: str, label: int, vocab: Vocab):
index = 0
with open(jsonl_file, "r", encoding="utf-8") as file:
for item in tqdm(file):
item = json.loads(item)
item_hash = item['hash']
acfg_list = []
for one_acfg in item['acfg_list']: # list of dict of acfg
block_features = one_acfg['block_features']
block_edges = one_acfg['block_edges']
one_acfg_data = Data(x=torch.tensor(block_features, dtype=torch.float), edge_index=torch.tensor(block_edges, dtype=torch.long))
acfg_list.append(one_acfg_data)
item_function_names = item['function_names']
item_function_edges = item['function_edges']
local_function_name_list = item_function_names[:len(acfg_list)]
assert len(acfg_list) == len(local_function_name_list), "The length of ACFG_List should be equal to the length of Local_Function_List"
external_function_name_list = item_function_names[len(acfg_list):]
external_function_index_list = [vocab[f_name] for f_name in external_function_name_list]
index += 1
torch.save(Data(hash=item_hash, local_acfgs=acfg_list, external_list=external_function_index_list, function_edges=item_function_edges, targets=label), "./{}.pt".format(index))
print(index)
if __name__ == '__main__':
json_path = "./sample.jsonl"
train_vocab_file = "../ReservedDataCode/processed_dataset/train_external_function_name_vocab.jsonl"
max_vocab_size = 10000
vocabulary = Vocab(freq_file=train_vocab_file, max_vocab_size=max_vocab_size)
parse_json_list_2_pyg_object(jsonl_file=json_path, label=1, vocab=vocabulary)