#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ # Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) # on a text file or a dataset without using HuggingFace Trainer. # Here is the full list of checkpoints on the hub that can be fine-tuned by this script: # https://huggingface.co/models?filter=masked-lm # """ # You can also adapt this script on your own mlm task. Pointers for this are left as comments. import argparse import logging import math import os import random import datasets import numpy as np import tokenizers import torch import transformers from accelerate import Accelerator from datasets import load_dataset from torch.utils.data.dataloader import DataLoader from tqdm.auto import tqdm from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AdamW, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, BatchEncoding, BertConfig, BertForPreTraining, DataCollatorForLanguageModeling, SchedulerType, get_scheduler, set_seed, ) logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def parse_args(): parser = argparse.ArgumentParser( description="Finetune a transformers model on a Masked Language Modeling task" ) # parser.add_argument( # "--dataset_name", # type=str, # default=None, # help="The name of the dataset to use (via the datasets library).", # ) # parser.add_argument( # "--dataset_config_name", # type=str, # default=None, # help="The configuration name of the dataset to use (via the datasets library).", # ) # parser.add_argument( # "--train_file", # type=str, # default=None, # help="A csv or a json file containing the training data.", # ) # parser.add_argument( # "--validation_file", # type=str, # default=None, # help="A csv or a json file containing the validation data.", # ) # parser.add_argument( # "--validation_split_percentage", # default=5, # help="The percentage of the train set used as validation set in case there's no validation split", # ) # parser.add_argument( # "--pad_to_max_length", # action="store_true", # help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", # ) # parser.add_argument( # "--model_name_or_path", # type=str, # help="Path to pretrained model or model identifier from huggingface.co/models.", # required=True, # ) # parser.add_argument( # "--config_name", # type=str, # default=None, # help="Pretrained config name or path if not the same as model_name", # ) # parser.add_argument( # "--tokenizer_name", # type=str, # default=None, # help="Pretrained tokenizer name or path if not the same as model_name", # ) # parser.add_argument( # "--use_slow_tokenizer", # action="store_true", # help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", # ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--weight_decay", type=float, default=0.0, help="Weight decay to use." ) parser.add_argument( "--num_train_epochs", type=int, default=40, help="Total number of training epochs to perform.", ) # parser.add_argument( # "--max_train_steps", # type=int, # default=None, # help="Total number of training steps to perform. If provided, overrides num_train_epochs.", # ) # parser.add_argument( # "--gradient_accumulation_steps", # type=int, # default=1, # help="Number of updates steps to accumulate before performing a backward/update pass.", # ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=[ "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", ], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler.", ) parser.add_argument( "--output_dir", type=str, default=None, help="Where to store the final model." ) parser.add_argument( "--seed", type=int, default=None, help="A seed for reproducible training." ) # parser.add_argument( # "--model_type", # type=str, # default=None, # help="Model type to use if training from scratch.", # choices=MODEL_TYPES, # ) # parser.add_argument( # "--max_seq_length", # type=int, # default=None, # help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated.", # ) # parser.add_argument( # "--line_by_line", # type=bool, # default=False, # help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.", # ) parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) # parser.add_argument( # "--overwrite_cache", # type=bool, # default=False, # help="Overwrite the cached training and evaluation sets", # ) parser.add_argument( "--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss", ) args = parser.parse_args() # Sanity checks # if ( # args.dataset_name is None # and args.train_file is None # and args.validation_file is None # ): # raise ValueError("Need either a dataset name or a training/validation file.") # else: # if args.train_file is not None: # extension = args.train_file.split(".")[-1] # assert extension in [ # "csv", # "json", # "txt", # ], "`train_file` should be a csv, json or txt file." # if args.validation_file is not None: # extension = args.validation_file.split(".")[-1] # assert extension in [ # "csv", # "json", # "txt", # ], "`validation_file` should be a csv, json or txt file." if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) return args def main(): args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. accelerator = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel( logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # # (the dataset will be downloaded automatically from the datasets Hub). # # # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # # 'text' is found. You can easily tweak this behavior (see below). # # # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # # download the dataset. # if args.dataset_name is not None: # # Downloading and loading a dataset from the hub. # raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) # if "validation" not in raw_datasets.keys(): # raw_datasets["validation"] = load_dataset( # args.dataset_name, # args.dataset_config_name, # split=f"train[:{args.validation_split_percentage}%]", # ) # raw_datasets["train"] = load_dataset( # args.dataset_name, # args.dataset_config_name, # split=f"train[{args.validation_split_percentage}%:]", # ) # else: # data_files = {} # if args.train_file is not None: # data_files["train"] = args.train_file # if args.validation_file is not None: # data_files["validation"] = args.validation_file # extension = args.train_file.split(".")[-1] # if extension == "txt": # extension = "text" # raw_datasets = load_dataset(extension, data_files=data_files) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # we use dataset in json format, # `raw_dataset` has two features: `text`:"sentA\tsentB" and `is_next`:0 or 1 # we take control of the load of dataset by oursevles # there will be several json file for training # raw_datasets = load_dataset("json", data_files=args.train_file, field="data") raw_datasets = load_dataset( "json", data_files="/home/ming/malware/inst2vec_bert/data/test_lm/inst.json", field="data", ) # we use the tokenizer trained on the positive dataset before # tokenizer = tokenizers.Tokenizer.from_file(args.tokenizer_file) tokenizer = tokenizers.Tokenizer.from_file( "/home/ming/malware/inst2vec_bert/bert/tokenizer-inst.json" ) tokenizer.enable_padding( pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=64 ) # we use a much smaller BERT, config is: config = BertConfig( vocab_size=tokenizer.get_vocab_size(), hidden_size=64, num_hidden_layers=8, num_attention_heads=8, intermediate_size=256, max_position_embeddings=64, ) # initalize the new BERT for pre-training model = BertForPreTraining(config) # all_special_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] # all_special_ids = [tokenizer.token_to_id(token) for token in all_special_tokens] # # Load pretrained model and tokenizer # # # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # # download model & vocab. # if args.config_name: # config = AutoConfig.from_pretrained(args.config_name) # elif args.model_name_or_path: # config = AutoConfig.from_pretrained(args.model_name_or_path) # else: # config = CONFIG_MAPPING[args.model_type]() # logger.warning("You are instantiating a new config instance from scratch.") # if args.tokenizer_name: # tokenizer = AutoTokenizer.from_pretrained( # args.tokenizer_name, use_fast=not args.use_slow_tokenizer # ) # elif args.model_name_or_path: # tokenizer = AutoTokenizer.from_pretrained( # args.model_name_or_path, use_fast=not args.use_slow_tokenizer # ) # else: # raise ValueError( # "You are instantiating a new tokenizer from scratch. This is not supported by this script." # "You can do it from another script, save it, and load it from here, using --tokenizer_name." # ) # if args.model_name_or_path: # model = AutoModelForMaskedLM.from_pretrained( # args.model_name_or_path, # from_tf=bool(".ckpt" in args.model_name_or_path), # config=config, # ) # else: # logger.info("Training new model from scratch") # model = AutoModelForMaskedLM.from_config(config) # model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] # if args.max_seq_length is None: # max_seq_length = tokenizer.model_max_length # if max_seq_length > 1024: # logger.warning( # f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " # "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." # ) # max_seq_length = 1024 # else: # if args.max_seq_length > tokenizer.model_max_length: # logger.warning( # f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" # f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." # ) # max_seq_length = min(args.max_seq_length, tokenizer.model_max_length) # if args.line_by_line: # # When using line_by_line, we just tokenize each nonempty line. # padding = "max_length" if args.pad_to_max_length else False # def tokenize_function(examples): # # Remove empty lines # examples["text"] = [ # line # for line in examples["text"] # if len(line) > 0 and not line.isspace() # ] # return tokenizer( # examples["text"], # padding=padding, # truncation=True, # max_length=max_seq_length, # # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it # # receives the `special_tokens_mask`. # return_special_tokens_mask=True, # ) # tokenized_datasets = raw_datasets.map( # tokenize_function, # batched=True, # num_proc=args.preprocessing_num_workers, # remove_columns=[text_column_name], # load_from_cache_file=not args.overwrite_cache, # ) # else: # # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. # # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more # # efficient when it receives the `special_tokens_mask`. # def tokenize_function(examples): # return tokenizer( # examples[text_column_name], return_special_tokens_mask=True # ) # tokenized_datasets = raw_datasets.map( # tokenize_function, # batched=True, # num_proc=args.preprocessing_num_workers, # remove_columns=column_names, # load_from_cache_file=not args.overwrite_cache, # ) # # Main data processing function that will concatenate all texts from our dataset and generate chunks of # # max_seq_length. # def group_texts(examples): # # Concatenate all texts. # concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} # total_length = len(concatenated_examples[list(examples.keys())[0]]) # # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # # customize this part to your needs. # total_length = (total_length // max_seq_length) * max_seq_length # # Split by chunks of max_len. # result = { # k: [ # t[i : i + max_seq_length] # for i in range(0, total_length, max_seq_length) # ] # for k, t in concatenated_examples.items() # } # return result # # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a # # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value # # might be slower to preprocess. # # # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map # tokenized_datasets = tokenized_datasets.map( # group_texts, # batched=True, # num_proc=args.preprocessing_num_workers, # load_from_cache_file=not args.overwrite_cache, # ) def tokenize_function(examples): text = [tuple(sent) for sent in examples["text"]] encoded_inputs = {} results = tokenizer.encode_batch(text) # input_ids, type_ids, special_token_masks = [], [], [] # for i, result in enumerate(results): # input_ids.append(result.ids) # type_ids.append(result.type_ids) # special_token_masks.append(result.special_tokens_mask) encoded_inputs["input_ids"] = [result.ids for result in results] encoded_inputs["token_type_ids"] = [result.type_ids for result in results] # special_tokens_mask = [1 if token in all_special_ids else 0 for token in ids] encoded_inputs["special_tokens_mask"] = [ result.special_tokens_mask for result in results ] # 0: is ; 1 : is not encoded_inputs["next_sentence_label "] = [ 1 - label for label in examples["is_next"] ] batch_outputs = BatchEncoding( encoded_inputs, tensor_type="np", prepend_batch_axis=False, ) return batch_outputs tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, # load_from_cache_file=not args.overwrite_cache, ) train_dataset = tokenized_datasets["train"] eval_dataset = tokenized_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Data collator # This one will take care of randomly masking the tokens. data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm_probability=args.mlm_probability ) # DataLoaders creation: train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size, ) eval_dataloader = DataLoader( eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size, ) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be # shorter in multiprocess) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil( len(train_dataloader) / args.gradient_accumulation_steps ) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil( args.max_train_steps / num_update_steps_per_epoch ) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Train! total_batch_size = ( args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps ) logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info( f" Instantaneous batch size per device = {args.per_device_train_batch_size}" ) logger.info( f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}" ) logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm( range(args.max_train_steps), disable=not accelerator.is_local_main_process ) completed_steps = 0 for epoch in range(args.num_train_epochs): model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if ( step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1 ): optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if completed_steps >= args.max_train_steps: break model.eval() losses = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) loss = outputs.loss losses.append( accelerator.gather(loss.repeat(args.per_device_eval_batch_size)) ) losses = torch.cat(losses) losses = losses[: len(eval_dataset)] try: perplexity = math.exp(torch.mean(losses)) except OverflowError: perplexity = float("inf") logger.info(f"epoch {epoch}: perplexity: {perplexity}") if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save) if __name__ == "__main__": main()