Compare commits
10 Commits
1d1acb29b3
...
979573651d
Author | SHA1 | Date | |
---|---|---|---|
979573651d | |||
|
51a232453a | ||
|
d06ae927e6 | ||
|
7533912d75 | ||
|
5d907a7516 | ||
|
a88683cbb3 | ||
|
c050cff9f5 | ||
|
fe2de236b5 | ||
|
fb61bb2a7b | ||
|
b4810738b8 |
21
README.md
21
README.md
@ -1,2 +1,19 @@
|
||||
# ASM-BERT
|
||||
Using HuggingFace Transformers to train a BERT for Assemble Language
|
||||
# Inst2Vec Model
|
||||
Using [HuggingFace Transformers](https://github.com/huggingface/transformers) to train a BERT with dynamic mask for Assemble Language from scratch. We name it `Inst2Vec` for it is designed to generate vectors for assemble instructions.
|
||||
|
||||
It is a part of the model introduced in the ICONIP 2021 paper [A Hierarchical Graph-based Neural Network for Malware Classification](https://link.springer.com/chapter/10.1007%2F978-3-030-92273-3_51).
|
||||
|
||||
The preprocessing procedure can be found in [process_data](./process_data/readme.md).
|
||||
|
||||
You can simply run `python train_my_tokenizer.py` to obtain an Assemble Tokenizer.
|
||||
|
||||
The script I use to train the `Inst2Vec1` model is as follows:
|
||||
```
|
||||
python my_run_mlm_no_trainer.py \
|
||||
--per_device_train_batch_size 8192 \
|
||||
--per_device_eval_batch_size 16384 \
|
||||
--num_warmup_steps 4000 --output_dir ./ \
|
||||
--seed 1234 --preprocessing_num_workers 32 \
|
||||
--max_train_steps 150000 \
|
||||
--eval_every_steps 1000
|
||||
```
|
@ -1,15 +1,6 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
NamedTuple,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
from typing import (TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional,
|
||||
Sequence, Tuple, Union)
|
||||
|
||||
import numpy as np
|
||||
import tokenizers
|
||||
@ -27,6 +18,8 @@ class MyDataCollatorForPreTraining:
|
||||
pad_to_multiple_of: Optional[int] = None
|
||||
|
||||
def __post_init__(self):
|
||||
# print(self.mlm, self.tokenzier.token_to_id("[MASK]"))
|
||||
# input()
|
||||
if self.mlm and self.tokenizer.token_to_id("[MASK]") is None:
|
||||
raise ValueError(
|
||||
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
|
||||
@ -36,6 +29,7 @@ class MyDataCollatorForPreTraining:
|
||||
def __call__(
|
||||
self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]],
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
# print(examples)
|
||||
# Handle dict or lists with proper padding and conversion to tensor.
|
||||
if isinstance(examples[0], (dict, BatchEncoding)):
|
||||
batch = pad(
|
||||
@ -56,6 +50,9 @@ class MyDataCollatorForPreTraining:
|
||||
batch["input_ids"], batch["labels"] = self.mask_tokens(
|
||||
batch["input_ids"], special_tokens_mask=special_tokens_mask
|
||||
)
|
||||
else:
|
||||
batch["input_ids"] = torch.squeeze(batch["input_ids"], dim=0)
|
||||
batch["token_type_ids"] = torch.squeeze(batch["token_type_ids"], dim=0)
|
||||
return batch
|
||||
|
||||
def mask_tokens(
|
||||
|
@ -43,6 +43,8 @@ from transformers import (CONFIG_MAPPING, MODEL_MAPPING, AdamW, AutoConfig,
|
||||
from my_data_collator import MyDataCollatorForPreTraining
|
||||
from process_data.utils import CURRENT_DATA_BASE
|
||||
|
||||
HIDDEN_SIZE=16
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
||||
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
||||
@ -55,13 +57,13 @@ def parse_args():
|
||||
parser.add_argument(
|
||||
"--per_device_train_batch_size",
|
||||
type=int,
|
||||
default=16,
|
||||
default=2048,
|
||||
help="Batch size (per device) for the training dataloader.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--per_device_eval_batch_size",
|
||||
type=int,
|
||||
default=64,
|
||||
default=16384,
|
||||
help="Batch size (per device) for the evaluation dataloader.",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -82,7 +84,7 @@ def parse_args():
|
||||
parser.add_argument(
|
||||
"--max_train_steps",
|
||||
type=int,
|
||||
default=None,
|
||||
default=150000,
|
||||
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -102,19 +104,19 @@ def parse_args():
|
||||
parser.add_argument(
|
||||
"--num_warmup_steps",
|
||||
type=int,
|
||||
default=0,
|
||||
default=4000,
|
||||
help="Number of steps for the warmup in the lr scheduler.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_dir", type=str, default=None, help="Where to store the final model."
|
||||
"--output_dir", type=str, default='./dataset/out', help="Where to store the final model."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seed", type=int, default=None, help="A seed for reproducible training."
|
||||
"--seed", type=int, default=1234, help="A seed for reproducible training."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--preprocessing_num_workers",
|
||||
type=int,
|
||||
default=None,
|
||||
default=32,
|
||||
help="The number of processes to use for the preprocessing.",
|
||||
)
|
||||
parser.add_argument(
|
||||
@ -187,10 +189,9 @@ def main():
|
||||
# field="data",
|
||||
# )
|
||||
train_files = [
|
||||
os.path.join(CURRENT_DATA_BASE, "inst.1.{}.json".format(i))
|
||||
for i in range(0, 128, 2)
|
||||
os.path.join(CURRENT_DATA_BASE, 'json',f"inst.all.{i}.json") for i in range(8)
|
||||
]
|
||||
valid_file = "/home/ming/malware/inst2vec_bert/data/test_lm/inst.json"
|
||||
valid_file = os.path.join(CURRENT_DATA_BASE, 'test', "inst.json")
|
||||
raw_datasets = load_dataset(
|
||||
"json",
|
||||
data_files={"train": train_files, "validation": valid_file,},
|
||||
@ -199,23 +200,23 @@ def main():
|
||||
|
||||
# we use the tokenizer previously trained on the dataset above
|
||||
tokenizer = tokenizers.Tokenizer.from_file(
|
||||
os.path.join(CURRENT_DATA_BASE, "tokenizer-inst.1.json")
|
||||
os.path.join(CURRENT_DATA_BASE, "tokenizer-inst.all.json")
|
||||
)
|
||||
|
||||
# NOTE: have to promise the `length` here is consistent with the one used in `train_my_tokenizer.py`
|
||||
tokenizer.enable_padding(
|
||||
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=32
|
||||
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=50
|
||||
)
|
||||
|
||||
# NOTE: `max_position_embeddings` here should be consistent with `length` above
|
||||
# we use a much smaller BERT, config is:
|
||||
config = BertConfig(
|
||||
vocab_size=tokenizer.get_vocab_size(),
|
||||
hidden_size=96,
|
||||
hidden_size=HIDDEN_SIZE,
|
||||
num_hidden_layers=4,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=384,
|
||||
max_position_embeddings=32,
|
||||
num_attention_heads=8,
|
||||
intermediate_size=4 * HIDDEN_SIZE,
|
||||
max_position_embeddings=50,
|
||||
)
|
||||
|
||||
# initalize a new BERT for pre-training
|
||||
@ -231,7 +232,10 @@ def main():
|
||||
def tokenize_function(examples):
|
||||
text = [tuple(sent) for sent in examples["text"]]
|
||||
encoded_inputs = {}
|
||||
# try:
|
||||
results = tokenizer.encode_batch(text)
|
||||
# except:
|
||||
# return None
|
||||
encoded_inputs["input_ids"] = [result.ids for result in results]
|
||||
encoded_inputs["token_type_ids"] = [result.type_ids for result in results]
|
||||
encoded_inputs["special_tokens_mask"] = [
|
||||
@ -254,6 +258,7 @@ def main():
|
||||
batched=True,
|
||||
num_proc=args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=True,
|
||||
)
|
||||
|
||||
train_dataset = tokenized_datasets["train"]
|
||||
|
65
my_utils.py
Normal file
65
my_utils.py
Normal file
@ -0,0 +1,65 @@
|
||||
import logging
|
||||
import os
|
||||
|
||||
"""
|
||||
日志工具
|
||||
|
||||
使用方法:
|
||||
logger = setup_logger(日志记录器的实例名字, 日志文件目录)
|
||||
"""
|
||||
def setup_logger(name, log_file, level=logging.INFO):
|
||||
"""Function setup as many loggers as you want"""
|
||||
if not os.path.exists(os.path.dirname(log_file)):
|
||||
os.makedirs(os.path.dirname(log_file))
|
||||
|
||||
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
|
||||
|
||||
handler = logging.FileHandler(log_file)
|
||||
handler.setFormatter(formatter)
|
||||
|
||||
# 控制台是否输出日志信息
|
||||
# stream_handler = logging.StreamHandler()
|
||||
# stream_handler.setFormatter(formatter)
|
||||
|
||||
logger = logging.getLogger(name)
|
||||
logger.setLevel(level)
|
||||
logger.addHandler(handler)
|
||||
# 控制台
|
||||
# logger.addHandler(stream_handler)
|
||||
|
||||
# 刷新原有log文件
|
||||
|
||||
if os.path.exists(log_file):
|
||||
open(log_file, 'w').close()
|
||||
|
||||
return logger
|
||||
|
||||
|
||||
"""
|
||||
多线程工具
|
||||
"""
|
||||
THREAD_FULL = os.cpu_count()
|
||||
THREAD_HALF = int(os.cpu_count() / 2)
|
||||
def multi_thread(func, args, thread_num=THREAD_FULL):
|
||||
"""
|
||||
多线程执行函数
|
||||
:param func: 函数
|
||||
:param args: list函数参数
|
||||
:param thread_num: 线程数
|
||||
:return:
|
||||
"""
|
||||
import concurrent.futures
|
||||
from tqdm import tqdm
|
||||
logger = setup_logger('multi_thread', './multi_thread.log')
|
||||
result = []
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=thread_num) as executor:
|
||||
futures_to_args = {
|
||||
executor.submit(func, arg): arg for arg in args
|
||||
}
|
||||
for future in tqdm(concurrent.futures.as_completed(futures_to_args), total=len(args)):
|
||||
try:
|
||||
result.append(future.result())
|
||||
except Exception as exc:
|
||||
logger.error('%r generated an exception: %s' % (futures_to_args[future], exc))
|
||||
return result
|
||||
|
131
obtain_inst_vec.py
Normal file
131
obtain_inst_vec.py
Normal file
@ -0,0 +1,131 @@
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
import tokenizers
|
||||
import torch
|
||||
import transformers
|
||||
from accelerate import Accelerator
|
||||
from datasets import load_dataset
|
||||
from torch import nn
|
||||
from torch.nn import DataParallel
|
||||
from torch.utils.data.dataloader import DataLoader
|
||||
from tqdm.auto import tqdm
|
||||
from transformers import (
|
||||
CONFIG_MAPPING,
|
||||
MODEL_MAPPING,
|
||||
AdamW,
|
||||
AutoConfig,
|
||||
AutoModelForMaskedLM,
|
||||
AutoTokenizer,
|
||||
BatchEncoding,
|
||||
BertConfig,
|
||||
BertForPreTraining,
|
||||
DataCollatorForLanguageModeling,
|
||||
SchedulerType,
|
||||
get_scheduler,
|
||||
set_seed,
|
||||
)
|
||||
|
||||
from my_data_collator import MyDataCollatorForPreTraining
|
||||
from process_data.utils import CURRENT_DATA_BASE
|
||||
|
||||
model_file = os.path.join(CURRENT_DATA_BASE, 'out' ,"pytorch_model.bin")
|
||||
config_file = os.path.join(CURRENT_DATA_BASE, 'out' ,"config.json")
|
||||
tokenizer_file = os.path.join(CURRENT_DATA_BASE, "tokenizer-inst.all.json")
|
||||
|
||||
|
||||
def load_model():
|
||||
config = BertConfig.from_json_file(config_file)
|
||||
model = BertForPreTraining(config)
|
||||
state_dict = torch.load(model_file)
|
||||
model.load_state_dict(state_dict)
|
||||
model.eval()
|
||||
print("Load model successfully !")
|
||||
|
||||
tokenizer = tokenizers.Tokenizer.from_file(tokenizer_file)
|
||||
tokenizer.enable_padding(
|
||||
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=50
|
||||
)
|
||||
print("Load tokenizer successfully !")
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def process_input(inst, tokenizer):
|
||||
encoded_input = {}
|
||||
if isinstance(inst, str):
|
||||
# make a batch by myself
|
||||
inst = [inst for _ in range(8)]
|
||||
results = tokenizer.encode_batch(inst)
|
||||
encoded_input["input_ids"] = [result.ids for result in results]
|
||||
encoded_input["token_type_ids"] = [result.type_ids for result in results]
|
||||
encoded_input["special_tokens_mask"] = [
|
||||
result.special_tokens_mask for result in results
|
||||
]
|
||||
|
||||
# print(encoded_input["input_ids"])
|
||||
|
||||
# use `np` rather than `pt` in case of reporting of error
|
||||
batch_output = BatchEncoding(
|
||||
encoded_input, tensor_type="np", prepend_batch_axis=False,
|
||||
)
|
||||
|
||||
# print(batch_output["input_ids"])
|
||||
|
||||
# NOTE: utilize the "special_tokens_mask",
|
||||
# only work if the input consists of single instruction
|
||||
length_mask = 1 - batch_output["special_tokens_mask"]
|
||||
|
||||
data_collator = MyDataCollatorForPreTraining(tokenizer=tokenizer, mlm=False)
|
||||
|
||||
model_input = data_collator([batch_output])
|
||||
|
||||
# print(model_input["input_ids"])
|
||||
|
||||
return model_input, length_mask
|
||||
|
||||
|
||||
def generate_inst_vec(inst, method="mean"):
|
||||
model, tokenizer = load_model()
|
||||
|
||||
model_input, length_mask = process_input(inst, tokenizer)
|
||||
length_mask = torch.from_numpy(length_mask).to(model_input["input_ids"].device)
|
||||
|
||||
output = model(**model_input, output_hidden_states=True)
|
||||
|
||||
if method == "cls":
|
||||
if isinstance(inst, str):
|
||||
return output.hidden_states[-1][0][0]
|
||||
elif isinstance(inst, list):
|
||||
return output.hidden_states[-1, :, 0, :]
|
||||
elif method == "mean":
|
||||
result = output.hidden_states[-1] * torch.unsqueeze(length_mask, dim=-1)
|
||||
# print(result.shape)
|
||||
if isinstance(inst, str):
|
||||
result = torch.mean(result[0], dim=0)
|
||||
elif isinstance(inst, list):
|
||||
result = torch.mean(result, dim=1)
|
||||
return result
|
||||
elif method == "max":
|
||||
result = output.hidden_states[-1] * torch.unsqueeze(length_mask, dim=-1)
|
||||
# print(result.shape)
|
||||
if isinstance(inst, str):
|
||||
result = torch.max(result[0], dim=0)
|
||||
elif isinstance(inst, list):
|
||||
result = torch.max(result, dim=1)
|
||||
return result
|
||||
|
||||
|
||||
def main():
|
||||
inst = ['adc byte [ ebp - 0x74 ] cl','mov dh 0x79','adc eax 1']
|
||||
tmp = generate_inst_vec(inst, method="mean")
|
||||
print(tmp.shape)
|
||||
print(tmp.detach().numpy())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,5 +1,5 @@
|
||||
import os
|
||||
|
||||
import pdb
|
||||
from utils import ORIGINAL_DATA_BASE, read_file
|
||||
|
||||
|
||||
@ -7,7 +7,7 @@ def check(filename):
|
||||
sents = read_file(filename)
|
||||
result = 0
|
||||
for sent in sents:
|
||||
result = max(result, len(sent[-1].replace("\t", " ").split()))
|
||||
result = max(result, len(sent[:-1].replace("\t", " ").split()))
|
||||
print("The longest sentence in {} has {} words".format(filename, result))
|
||||
return result
|
||||
|
||||
@ -15,10 +15,10 @@ def check(filename):
|
||||
def main():
|
||||
longest = 0
|
||||
# for i in range(6):
|
||||
for i in [1]:
|
||||
for i in range(32):
|
||||
for group in ("pos", "neg"):
|
||||
filename = os.path.join(
|
||||
ORIGINAL_DATA_BASE, "inst.{}.{}.txt".format(i, group)
|
||||
ORIGINAL_DATA_BASE, f'{group}_clean',f"inst.{i}.{group}.txt.clean"
|
||||
)
|
||||
longest = max(check(filename), longest)
|
||||
print("The longest sentence in all files has {} words.".format(longest))
|
||||
|
57
process_data/clean.py
Normal file
57
process_data/clean.py
Normal file
@ -0,0 +1,57 @@
|
||||
from utils import ORIGINAL_DATA_BASE, read_file, write_file
|
||||
from tqdm import tqdm
|
||||
import os
|
||||
from my_utils import multi_thread, setup_logger
|
||||
import concurrent.futures
|
||||
|
||||
|
||||
|
||||
|
||||
def remove(neg_list, pos_file):
|
||||
ret = []
|
||||
for neg in neg_list:
|
||||
if neg in pos_file:
|
||||
continue
|
||||
ret.append(neg)
|
||||
return ret
|
||||
|
||||
def split_list_evenly(lst, n):
|
||||
# 计算每块的大小(整除,最后一块可能略短)
|
||||
chunk_size = len(lst) // n
|
||||
# 最后一块可能需要额外的元素
|
||||
last_chunk_size = len(lst) % n
|
||||
# 初始化空列表存放切片后的块
|
||||
chunks = []
|
||||
|
||||
# 对于前n-1块
|
||||
for i in range(0, (n - (last_chunk_size > 0)), chunk_size):
|
||||
chunks.append(lst[i:i + chunk_size])
|
||||
|
||||
# 添加最后一个可能稍短的块
|
||||
if last_chunk_size > 0:
|
||||
chunks.append(lst[(n - (last_chunk_size > 0)) * chunk_size:])
|
||||
|
||||
return chunks
|
||||
|
||||
def main():
|
||||
file = os.path.join('../dataset/all/all_clean')
|
||||
pos_file = read_file(os.path.join(file, "inst.all.pos.txt.clean"))
|
||||
neg_file = split_list_evenly(read_file(os.path.join(file, "inst.all.neg.txt.clean")), int(os.cpu_count()*1000))
|
||||
print(len(neg_file))
|
||||
logger = setup_logger('remove', '../out/remove.log')
|
||||
result = []
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
||||
print('start build task.')
|
||||
futures_to_args = {
|
||||
executor.submit(remove, neg_list, pos_file): neg_list for neg_list in neg_file
|
||||
}
|
||||
print('start run task.')
|
||||
for future in tqdm(concurrent.futures.as_completed(futures_to_args), total=len(futures_to_args)):
|
||||
try:
|
||||
result.extend(future.result())
|
||||
except Exception as exc:
|
||||
logger.error(exc)
|
||||
write_file(result, os.path.join(file, "inst.all.neg.txt.clean"))
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -19,11 +19,11 @@ def convert(fin, fout):
|
||||
|
||||
def main():
|
||||
# for i in range(6):
|
||||
for i in [1]:
|
||||
fin = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(i))
|
||||
fout = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.pos.txt".format(i))
|
||||
convert(fin, fout)
|
||||
|
||||
# for i in range(10):
|
||||
# fin = os.path.join(ORIGINAL_DATA_BASE, "win32_0{}xxxx.all".format(i))
|
||||
# fout = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.pos.txt".format(i))
|
||||
# convert(fin, fout)
|
||||
convert(os.path.join('../dataset/all/win.all'), os.path.join('../dataset/all/inst.pos.txt'))
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -41,12 +41,12 @@ def counter(filename):
|
||||
def main():
|
||||
cnt = set()
|
||||
# for i in range(6):
|
||||
for i in [1]:
|
||||
for i in range(10):
|
||||
for group in ["pos", "neg"]:
|
||||
filename = os.path.join(
|
||||
ORIGINAL_DATA_BASE, "inst.{}.{}.txt".format(i, group)
|
||||
ORIGINAL_DATA_BASE, "inst.{}.{}.txt.clean".format(i, group)
|
||||
)
|
||||
cnt += counter(filename)
|
||||
cnt = cnt.union(counter(filename))
|
||||
print("There are {} charcters in all files".format(len(cnt)))
|
||||
|
||||
|
||||
|
@ -5,30 +5,35 @@ from tqdm import tqdm
|
||||
|
||||
from utils import ORIGINAL_DATA_BASE, read_file
|
||||
|
||||
from my_utils import multi_thread
|
||||
|
||||
|
||||
def create(pos, neg, tgt):
|
||||
pos_sents = read_file(pos)
|
||||
|
||||
neg_sents = read_file(neg)
|
||||
neg_length = len(neg_sents)
|
||||
print("Start writing negative examples to {}...".format(tgt))
|
||||
with open(tgt, "w", encoding="utf-8") as fout:
|
||||
for sent in tqdm(pos_sents):
|
||||
first = sent.split("\t")[0]
|
||||
index = randint(0, neg_length - 1)
|
||||
pair = neg_sents[index].split("\t")[randint(0, 1)].replace("\n", "")
|
||||
pair = neg_sents[index].split("\t")
|
||||
pair = pair[randint(0, 1)]
|
||||
pair = pair.replace("\n", "")
|
||||
fout.write(first + "\t" + pair + "\n")
|
||||
|
||||
|
||||
def main():
|
||||
# for i in range(6):
|
||||
for i in [1]:
|
||||
j = (i + 1) % 6
|
||||
pos = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(i))
|
||||
neg = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(j))
|
||||
tgt = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.neg.txt".format(i))
|
||||
# neg = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(j))
|
||||
# pos = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(i))
|
||||
file = os.path.join("../dataset/all/pos_clean")
|
||||
out_file = os.path.join("../dataset/all/neg_txt")
|
||||
os.makedirs(out_file, exist_ok=True)
|
||||
for i in tqdm(range(os.cpu_count()), total=os.cpu_count() ):
|
||||
j = (i + 1) % os.cpu_count()
|
||||
pos = os.path.join(file, f"inst.{i}.pos.txt.clean")
|
||||
neg = os.path.join(file, f"inst.{j}.pos.txt.clean")
|
||||
tgt = os.path.join(out_file, f"inst.{i}.neg.txt")
|
||||
create(pos, neg, tgt)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
90
process_data/exe2all.py
Normal file
90
process_data/exe2all.py
Normal file
@ -0,0 +1,90 @@
|
||||
import os
|
||||
import r2pipe
|
||||
from my_utils import setup_logger
|
||||
import concurrent.futures
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def extract_opcode(disasm_text):
|
||||
"""
|
||||
从反汇编文本中提取操作码和操作数
|
||||
正则表达式用于匹配操作码和操作数,考虑到操作数可能包含空格和逗号
|
||||
"""
|
||||
op_list = disasm_text.split(' ')
|
||||
res = []
|
||||
for item in op_list:
|
||||
item = item.strip().replace(',', '')
|
||||
if '[' in item:
|
||||
res.append('[')
|
||||
res.append(item.replace('[', '').replace(']', ''))
|
||||
if ']' in item:
|
||||
res.append(']')
|
||||
return res
|
||||
|
||||
|
||||
def double_exe_op_list(op_list):
|
||||
double_exe_op_list = []
|
||||
for i in range(len(op_list) - 1 ):
|
||||
double_exe_op_list.append((op_list[i], op_list[i + 1]))
|
||||
return double_exe_op_list
|
||||
|
||||
def get_all_from_exe(file, out_file):
|
||||
# 获取基础块内的操作码序列
|
||||
r2pipe_open = r2pipe.open(os.path.join(file), flags=['-2'])
|
||||
with open(out_file, 'a') as f:
|
||||
try:
|
||||
# 获取函数列表
|
||||
r2pipe_open.cmd("aaa")
|
||||
r2pipe_open.cmd('e arch=x86')
|
||||
function_list = r2pipe_open.cmdj("aflj")
|
||||
exe_op_list = []
|
||||
for function in function_list:
|
||||
if function['name'][:4] not in ['fcn.', 'loc.', 'main', 'entr']:
|
||||
continue
|
||||
block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
|
||||
for block in block_list:
|
||||
# 获取基本块的反汇编指令
|
||||
disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
|
||||
if disasm:
|
||||
for op in disasm:
|
||||
if op["type"] == "invalid" or op["opcode"] == "invalid":
|
||||
continue
|
||||
op_list = extract_opcode(op["disasm"])
|
||||
exe_op_list.append(' '.join(op_list))
|
||||
exe_op_list = double_exe_op_list(exe_op_list)
|
||||
for op_str_before, op_str_after in exe_op_list:
|
||||
f.write(op_str_before + '\t' + op_str_after + '\n')
|
||||
except Exception as e:
|
||||
logger.error(f"Error: get function list failed in {file} ,error {e}")
|
||||
return False, file, e
|
||||
r2pipe_open.quit()
|
||||
return True, '', ''
|
||||
|
||||
|
||||
def main():
|
||||
sample_file_path = '/mnt/d/bishe/dataset/sample_malware/'
|
||||
sample_file_list = os.listdir(sample_file_path)[:1000]
|
||||
out_file_path = '../dataset/all'
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
||||
print(f"start with {os.cpu_count()} works.")
|
||||
future_to_args = {
|
||||
executor.submit(get_all_from_exe,
|
||||
os.path.join(sample_file_path, sample_file_list[file_index]),
|
||||
os.path.join(out_file_path, str(f'inst.{file_index%os.cpu_count()}.pos.txt'))
|
||||
):
|
||||
file_index for file_index in range(len(sample_file_list))
|
||||
}
|
||||
for future in tqdm(concurrent.futures.as_completed(future_to_args), total=len(sample_file_list)):
|
||||
try:
|
||||
future.result()
|
||||
if not future.result()[0]:
|
||||
print(f"Error file: {future.result()[1]}, msg {future.result()[2]}")
|
||||
except Exception as exc:
|
||||
logger.error(f"Error: {exc}")
|
||||
print(f"Error: {exc}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
logger = setup_logger('exe2all', '../log/exe2all.log')
|
||||
main()
|
||||
|
@ -7,8 +7,8 @@ from tqdm import tqdm
|
||||
|
||||
from utils import CURRENT_DATA_BASE, ORIGINAL_DATA_BASE, read_file
|
||||
|
||||
BASE = 4600000
|
||||
|
||||
# BASE = 4600000
|
||||
BASE = 46000
|
||||
|
||||
def write_worker(sents, json_file, index):
|
||||
examples = []
|
||||
@ -24,11 +24,19 @@ def write_worker(sents, json_file, index):
|
||||
|
||||
|
||||
def merge_to_json(pos, neg, json_file):
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
sents = read_file(pos)
|
||||
|
||||
p = Pool(36)
|
||||
p = Pool(6)
|
||||
|
||||
for i in range(64):
|
||||
for i in range(6):
|
||||
p.apply_async(
|
||||
write_worker, args=(sents[i * BASE : (i + 1) * BASE], json_file, i,)
|
||||
)
|
||||
@ -55,11 +63,11 @@ def merge_to_json(pos, neg, json_file):
|
||||
|
||||
sents = read_file(neg)
|
||||
|
||||
p = Pool(8)
|
||||
p = Pool(6)
|
||||
|
||||
for i in range(64):
|
||||
for i in range(6):
|
||||
p.apply_async(
|
||||
write_worker, args=(sents[i * BASE : (i + 1) * BASE], json_file, 64 + i,)
|
||||
write_worker, args=(sents[i * BASE : (i + 1) * BASE], json_file, 6 + i,)
|
||||
)
|
||||
print("Waiting for all sub-processes done...")
|
||||
p.close()
|
||||
@ -80,11 +88,15 @@ def merge_to_json(pos, neg, json_file):
|
||||
|
||||
def main():
|
||||
# for i in range(6):
|
||||
for i in [1]:
|
||||
pos = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.pos.label.txt".format(i))
|
||||
neg = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.neg.label.txt".format(i))
|
||||
json_file = os.path.join(CURRENT_DATA_BASE, "inst.{}.".format(i))
|
||||
merge_to_json(pos, neg, json_file)
|
||||
# for i in range(6):
|
||||
# pos = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.pos.label.txt".format(i))
|
||||
# neg = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.neg.label.txt".format(i))
|
||||
# json_file = os.path.join(CURRENT_DATA_BASE, "inst.{}.".format(i))
|
||||
# merge_to_json(pos, neg, json_file)
|
||||
pos = os.path.join(ORIGINAL_DATA_BASE,'all_clean', "inst.all.pos.txt.clean.label")
|
||||
neg = os.path.join(ORIGINAL_DATA_BASE, 'all_clean',"inst.all.neg.txt.clean.label")
|
||||
json_file = os.path.join(CURRENT_DATA_BASE, 'json',"inst.all.")
|
||||
merge_to_json(pos, neg, json_file)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
49
process_data/r2test/max_op_count.py
Normal file
49
process_data/r2test/max_op_count.py
Normal file
@ -0,0 +1,49 @@
|
||||
import r2pipe
|
||||
from my_utils import setup_logger, multi_thread, THREAD_FULL
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
|
||||
def get_all_from_exe(file):
|
||||
# 获取基础块内的操作码序列
|
||||
r2pipe_open = r2pipe.open(os.path.join(file), flags=['-2'])
|
||||
try:
|
||||
# 获取函数列表
|
||||
r2pipe_open.cmd("aaa")
|
||||
r2pipe_open.cmd('e arch=x86')
|
||||
function_list = r2pipe_open.cmdj("aflj")
|
||||
exe_op_count = []
|
||||
for function in function_list:
|
||||
function_op_count_list = []
|
||||
if function['name'][:4] not in ['fcn.', 'loc.', 'main', 'entr']:
|
||||
continue
|
||||
block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
|
||||
|
||||
for block in block_list:
|
||||
# 获取基本块的反汇编指令
|
||||
disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
|
||||
block_op_count = 0
|
||||
if disasm:
|
||||
print_flag = 1 if len(disasm) >= 723 else 0
|
||||
for op in disasm:
|
||||
if op["type"] == "invalid" or op["opcode"] == "invalid":
|
||||
continue
|
||||
if print_flag == 1:
|
||||
print(op['disasm'])
|
||||
block_op_count += 1
|
||||
function_op_count_list.append(block_op_count)
|
||||
exe_op_count.append(function_op_count_list)
|
||||
|
||||
logger.info(f"{file} {exe_op_count}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error: get function list failed in {file} ,error {e}")
|
||||
return False, file, e
|
||||
r2pipe_open.quit()
|
||||
return True, '', ''
|
||||
|
||||
if __name__ == '__main__':
|
||||
logger = setup_logger('get_all_from_exe', '../../log/get_all_from_exe.log')
|
||||
file = '/mnt/d/bishe/dataset/sample_benign'
|
||||
file_list = os.listdir(file)
|
||||
multi_thread(get_all_from_exe, ['/mnt/d/bishe/dataset/sample_benign/00125dcd81261701fcaaf84d0cb45d0e.exe'], thread_num=THREAD_FULL)
|
@ -2,21 +2,64 @@
|
||||
### 1. run `convert_space_format.py`
|
||||
Convert the string `<space>` to `SPACE`
|
||||
|
||||
### 2. run `create_negtive_examples.py`
|
||||
`linux32_0ixxxx.all -> inst.i.pos.txt` located at `/home/ming/malware/data/elfasm_inst_pairs`
|
||||
|
||||
### 2. remove the repete lines in the `inst.i.pos.txt`
|
||||
Using python script is too slow. We use the shell instead.
|
||||
|
||||
``` shell
|
||||
cat inst.i.pos.txt | sort -n | uniq > inst.i.pos.txt.clean
|
||||
```
|
||||
|
||||
|
||||
### 3. create_negtive_examples
|
||||
We use the next file of the current file as its negative examples, which is apparently rational.
|
||||
|
||||
Specifically, for each instruction in the current positive file, we randomly choose a line in its next file and select one of two instructions in the line as its negative example.
|
||||
|
||||
### 3. run `merge_examples_to_json.py`
|
||||
We dump the positive and negative examples with their corresponding labels into several json files.
|
||||
Each json file contains 20m lines of examples.
|
||||
`python create_negtive_examples.py`, generating `inst.i.neg.txt` located at `/home/ming/malware/data/elfasm_inst_pairs`
|
||||
|
||||
### 4. run `check_length.py`
|
||||
|
||||
### 4. merge all of the files
|
||||
We catenate all of the `inst.i.pos.txt.clean` files and remove the possible repeting lines between different files:
|
||||
``` shell
|
||||
cat inst.*.pos.txt.clean | sort -n | uniq > inst.all.pos.txt.clean
|
||||
```
|
||||
|
||||
We process the files containing negative examples similarly.
|
||||
``` shell
|
||||
cat inst.*.neg.txt.clean | sort -n | uniq > inst.all.neg.txt.clean
|
||||
```
|
||||
|
||||
Based on the `inst.all.pos.txt.clean`, we remove the lines from `inst.all.neg.txt.clean` if they also occur in `inst.all.pos.txt.clean`. This can be completed by `python clean.py`, or
|
||||
<!-- ```shell
|
||||
grep -v -f inst.all.pos.txt.clean inst.all.neg.txt.clean > inst.all.neg.txt.clean
|
||||
``` -->
|
||||
|
||||
|
||||
### 5. convert to json format
|
||||
We first add labels for positive examples and negative examples
|
||||
```shell
|
||||
cat inst.all.neg.txt.clean | sed 's/^/0\t&/g' > inst.all.neg.txt.clean.label
|
||||
cat inst.all.pos.txt.clean | sed 's/^/1\t&/g' > inst.all.pos.txt.clean.label
|
||||
```
|
||||
|
||||
We dump the positive and negative examples with their corresponding labels into several json files, using `python merge_examples_to_json.py`.
|
||||
|
||||
Generate `inst.all.{0,1}.json` located at `/home/ming/malware/inst2vec_bert/data/asm_bert`.
|
||||
|
||||
|
||||
### 6. get the maximum of length in examples
|
||||
We will specify the length padded to when we use the tokenizer, `tokenizer.enable_padding(..., length=)`.
|
||||
|
||||
So we need to know the longest sentences in the dataset.
|
||||
|
||||
### 5. run `count_word_for_vocab.py`
|
||||
The result is `28`, so I set `length=32`
|
||||
|
||||
|
||||
### 7. get the size of vocab of examples
|
||||
Similarly, we also need to specify the size of vocabulary when we train the tokenizer, `WordLevelTrainer(vocab_size=, ...)`.
|
||||
|
||||
So we need to know how many characters in the dataset.
|
||||
|
||||
The result is `1016`, so I set `vocab_size=2000`.
|
18
process_data/shell_com/remove_repete_line.py
Normal file
18
process_data/shell_com/remove_repete_line.py
Normal file
@ -0,0 +1,18 @@
|
||||
# Python运行shell脚本
|
||||
import subprocess
|
||||
import os
|
||||
from my_utils import multi_thread
|
||||
|
||||
|
||||
|
||||
def run_shell(file_num):
|
||||
com_line = f'cat ./neg_txt/inst.{file_num}.neg.txt | sort -n | uniq > ./neg_clean/inst.{file_num}.neg.txt.clean'
|
||||
p = subprocess.Popen(com_line, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
stdout, stderr = p.communicate()
|
||||
return stdout, stderr
|
||||
|
||||
if __name__ == '__main__':
|
||||
os.chdir('../../dataset/all')
|
||||
result = multi_thread(run_shell, range(os.cpu_count()))
|
||||
|
||||
|
@ -1,17 +1,16 @@
|
||||
import os
|
||||
|
||||
ORIGINAL_DATA_BASE = "/home/ming/malware/data/elfasm_inst_pairs"
|
||||
CURRENT_DATA_BASE = "/home/ming/malware/inst2vec_bert/data/asm_bert"
|
||||
# ORIGINAL_DATA_BASE = "/home/ming/malware/data/elfasm_inst_pairs"
|
||||
ORIGINAL_DATA_BASE = "/mnt/d/bishe/Inst2Vec/dataset/all"
|
||||
CURRENT_DATA_BASE = "/mnt/d/bishe/Inst2Vec/dataset/all"
|
||||
|
||||
|
||||
def read_file(filename):
|
||||
print("Reading data from {}...".format(filename))
|
||||
with open(filename, "r", encoding="utf-8") as fin:
|
||||
return fin.readlines()
|
||||
|
||||
|
||||
def write_file(sents, filename):
|
||||
print("Writing data to {}...".format(filename))
|
||||
with open(filename, "w", encoding="utf-8") as fout:
|
||||
for sent in sents:
|
||||
fout.write(sent)
|
||||
|
@ -2,7 +2,6 @@ import argparse
|
||||
import os
|
||||
from itertools import chain
|
||||
|
||||
from datasets import load_dataset
|
||||
from tokenizers import Tokenizer
|
||||
from tokenizers.models import WordLevel
|
||||
from tokenizers.pre_tokenizers import Whitespace
|
||||
@ -11,7 +10,7 @@ from tokenizers.trainers import WordLevelTrainer
|
||||
|
||||
from process_data.utils import CURRENT_DATA_BASE, ORIGINAL_DATA_BASE, read_file
|
||||
|
||||
BASE_PATH = "/home/ming/malware/inst2vec_bert/bert/"
|
||||
|
||||
|
||||
|
||||
def parse_args():
|
||||
@ -27,7 +26,7 @@ def parse_args():
|
||||
parser.add_argument(
|
||||
"--padding_length",
|
||||
type=int,
|
||||
default=32,
|
||||
default=50,
|
||||
help="The length will be padded to by the tokenizer.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
@ -99,8 +98,8 @@ def main(tokenizer_file=""):
|
||||
# dataset = load_dataset("json", data_files=json_files, field="data")
|
||||
|
||||
text_files = [
|
||||
os.path.join(ORIGINAL_DATA_BASE, "inst.1.{}.txt".format(group))
|
||||
for group in ["pos", "neg"]
|
||||
os.path.join(ORIGINAL_DATA_BASE, f'{group}_clean',f"inst.{i}.{group}.txt.clean")
|
||||
for group in ["pos", "neg"] for i in range(32)
|
||||
]
|
||||
|
||||
dataset = []
|
||||
@ -121,4 +120,4 @@ def main(tokenizer_file=""):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(os.path.join(CURRENT_DATA_BASE, "tokenizer-inst.1.json"))
|
||||
main(os.path.join(CURRENT_DATA_BASE, "tokenizer-inst.all.json"))
|
||||
|
Loading…
Reference in New Issue
Block a user