complete data processing and first vision of training script
This commit is contained in:
commit
b595346a07
434
data_collator_for_language_model.py
Normal file
434
data_collator_for_language_model.py
Normal file
@ -0,0 +1,434 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
NamedTuple,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
import tokenizers
|
||||
import torch
|
||||
from transformers import BatchEncoding
|
||||
|
||||
EncodedInput = List[int]
|
||||
|
||||
|
||||
@dataclass
|
||||
class MyDataCollatorForPreTraining:
|
||||
# """
|
||||
# Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
|
||||
# are not all of the same length.
|
||||
|
||||
# Args:
|
||||
# # tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
|
||||
|
||||
# tokenizer (:class:`tokenizers.Tokenizer`)
|
||||
# The tokenizer used for encoding the data.
|
||||
# mlm (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
# Whether or not to use masked language modeling. If set to :obj:`False`, the labels are the same as the
|
||||
# inputs with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for
|
||||
# non-masked tokens and the value to predict for the masked token.
|
||||
# mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
|
||||
# The probability with which to (randomly) mask tokens in the input, when :obj:`mlm` is set to :obj:`True`.
|
||||
# pad_to_multiple_of (:obj:`int`, `optional`):
|
||||
# If set will pad the sequence to a multiple of the provided value.
|
||||
|
||||
# .. note::
|
||||
|
||||
# For best performance, this data collator should be used with a dataset having items that are dictionaries or
|
||||
# BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
|
||||
# :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
|
||||
# argument :obj:`return_special_tokens_mask=True`.
|
||||
# """
|
||||
# def __init__(
|
||||
# self,
|
||||
# tokenizer: tokenizers.Tokenizer,
|
||||
# mlm: bool = True,
|
||||
# mlm_probability: float = 0.15,
|
||||
# pad_to_multiple_of: Optional[int] = None,
|
||||
# ):
|
||||
# self.tokenizer = tokenizer
|
||||
# self.mlm = mlm
|
||||
# self.mlm_probability = mlm_probability
|
||||
# self.pad_to_multiple_of = pad_to_multiple_of
|
||||
tokenizer: tokenizers.Tokenizer
|
||||
mlm: bool = True
|
||||
mlm_probability: float = 0.15
|
||||
pad_to_multiple_of: Optional[int] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.mlm and self.tokenizer.token_to_id("[MASK]") is None:
|
||||
raise ValueError(
|
||||
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
|
||||
"You should pass `mlm=False` to train on causal language modeling instead."
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]],
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
# Handle dict or lists with proper padding and conversion to tensor.
|
||||
if isinstance(examples[0], (dict, BatchEncoding)):
|
||||
batch = pad(
|
||||
examples,
|
||||
return_tensors="pt",
|
||||
pad_to_multiple_of=self.pad_to_multiple_of,
|
||||
)
|
||||
else:
|
||||
batch = {
|
||||
"input_ids": _collate_batch(
|
||||
examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of
|
||||
)
|
||||
}
|
||||
|
||||
# If special token mask has been preprocessed, pop it from the dict.
|
||||
special_tokens_mask = batch.pop("special_tokens_mask", None)
|
||||
if self.mlm:
|
||||
batch["input_ids"], batch["labels"] = self.mask_tokens(
|
||||
batch["input_ids"], special_tokens_mask=special_tokens_mask
|
||||
)
|
||||
# else:
|
||||
# labels = batch["input_ids"].clone()
|
||||
# if self.tokenizer.pad_token_id is not None:
|
||||
# labels[labels == self.tokenizer.pad_token_id] = -100
|
||||
# batch["labels"] = labels
|
||||
return batch
|
||||
|
||||
def mask_tokens(
|
||||
self, inputs: torch.Tensor, special_tokens_mask: Optional[torch.Tensor] = None
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
|
||||
"""
|
||||
labels = inputs.clone()
|
||||
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
|
||||
probability_matrix = torch.full(labels.shape, self.mlm_probability)
|
||||
if special_tokens_mask is None:
|
||||
special_tokens_mask = [
|
||||
self.tokenizer.get_special_tokens_mask(
|
||||
val, already_has_special_tokens=True
|
||||
)
|
||||
for val in labels.tolist()
|
||||
]
|
||||
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
|
||||
else:
|
||||
special_tokens_mask = special_tokens_mask.bool()
|
||||
|
||||
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
|
||||
masked_indices = torch.bernoulli(probability_matrix).bool()
|
||||
labels[~masked_indices] = -100 # We only compute loss on masked tokens
|
||||
|
||||
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
||||
indices_replaced = (
|
||||
torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
|
||||
)
|
||||
# inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(
|
||||
# self.tokenizer.mask_token
|
||||
# )
|
||||
inputs[indices_replaced] = self.tokenizer.token_to_id("[MASK]")
|
||||
|
||||
# 10% of the time, we replace masked input tokens with random word
|
||||
indices_random = (
|
||||
torch.bernoulli(torch.full(labels.shape, 0.5)).bool()
|
||||
& masked_indices
|
||||
& ~indices_replaced
|
||||
)
|
||||
random_words = torch.randint(
|
||||
self.tokenizer.get_vocab_size(), labels.shape, dtype=torch.long
|
||||
)
|
||||
inputs[indices_random] = random_words[indices_random]
|
||||
|
||||
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
||||
return inputs, labels
|
||||
|
||||
|
||||
def pad(
|
||||
self,
|
||||
encoded_inputs: Union[
|
||||
BatchEncoding,
|
||||
List[BatchEncoding],
|
||||
Dict[str, EncodedInput],
|
||||
Dict[str, List[EncodedInput]],
|
||||
List[Dict[str, EncodedInput]],
|
||||
],
|
||||
padding=True,
|
||||
max_length: Optional[int] = None,
|
||||
pad_to_multiple_of: Optional[int] = None,
|
||||
return_attention_mask: Optional[bool] = None,
|
||||
return_tensors=None,
|
||||
verbose: bool = True,
|
||||
) -> BatchEncoding:
|
||||
"""
|
||||
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
||||
in the batch.
|
||||
Padding side (left/right) padding token ids are defined at the tokenizer level (with ``self.padding_side``,
|
||||
``self.pad_token_id`` and ``self.pad_token_type_id``)
|
||||
.. note::
|
||||
If the ``encoded_inputs`` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
||||
result will use the same type unless you provide a different tensor type with ``return_tensors``. In the
|
||||
case of PyTorch tensors, you will lose the specific device of your tensors however.
|
||||
Args:
|
||||
encoded_inputs (:class:`~transformers.BatchEncoding`, list of :class:`~transformers.BatchEncoding`, :obj:`Dict[str, List[int]]`, :obj:`Dict[str, List[List[int]]` or :obj:`List[Dict[str, List[int]]]`):
|
||||
Tokenized inputs. Can represent one input (:class:`~transformers.BatchEncoding` or :obj:`Dict[str,
|
||||
List[int]]`) or a batch of tokenized inputs (list of :class:`~transformers.BatchEncoding`, `Dict[str,
|
||||
List[List[int]]]` or `List[Dict[str, List[int]]]`) so you can use this method during preprocessing as
|
||||
well as in a PyTorch Dataloader collate function.
|
||||
Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
||||
see the note above for the return type.
|
||||
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
||||
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
||||
index) among:
|
||||
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
|
||||
single sequence if provided).
|
||||
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
||||
maximum acceptable input length for the model if that argument is not provided.
|
||||
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
||||
different lengths).
|
||||
max_length (:obj:`int`, `optional`):
|
||||
Maximum length of the returned list and optionally padding length (see above).
|
||||
pad_to_multiple_of (:obj:`int`, `optional`):
|
||||
If set will pad the sequence to a multiple of the provided value.
|
||||
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
||||
>= 7.5 (Volta).
|
||||
return_attention_mask (:obj:`bool`, `optional`):
|
||||
Whether to return the attention mask. If left to the default, will return the attention mask according
|
||||
to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute.
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
|
||||
If set, will return tensors instead of list of python integers. Acceptable values are:
|
||||
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
|
||||
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
|
||||
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
|
||||
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not to print more information and warnings.
|
||||
"""
|
||||
# If we have a list of dicts, let's convert it in a dict of lists
|
||||
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
||||
if isinstance(encoded_inputs, (list, tuple)) and isinstance(
|
||||
encoded_inputs[0], (dict, BatchEncoding)
|
||||
):
|
||||
encoded_inputs = {
|
||||
key: [example[key] for example in encoded_inputs]
|
||||
for key in encoded_inputs[0].keys()
|
||||
}
|
||||
|
||||
# The model's main input name, usually `input_ids`, has be passed for padding
|
||||
# if self.model_input_names[0] not in encoded_inputs:
|
||||
# raise ValueError(
|
||||
# "You should supply an encoding or a list of encodings to this method "
|
||||
# f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
||||
# )
|
||||
|
||||
required_input = encoded_inputs["input_ids"]
|
||||
|
||||
if not required_input:
|
||||
if return_attention_mask:
|
||||
encoded_inputs["attention_mask"] = []
|
||||
return encoded_inputs
|
||||
|
||||
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
||||
# and rebuild them afterwards if no return_tensors is specified
|
||||
# Note that we lose the specific device the tensor may be on for PyTorch
|
||||
|
||||
first_element = required_input[0]
|
||||
if isinstance(first_element, (list, tuple)):
|
||||
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
||||
index = 0
|
||||
while len(required_input[index]) == 0:
|
||||
index += 1
|
||||
if index < len(required_input):
|
||||
first_element = required_input[index][0]
|
||||
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
||||
if not isinstance(first_element, (int, list, tuple)):
|
||||
if isinstance(first_element, torch.Tensor):
|
||||
return_tensors = "pt" if return_tensors is None else return_tensors
|
||||
elif isinstance(first_element, np.ndarray):
|
||||
return_tensors = "np" if return_tensors is None else return_tensors
|
||||
else:
|
||||
raise ValueError(
|
||||
f"type of {first_element} unknown: {type(first_element)}. "
|
||||
f"Should be one of a python, numpy, pytorch or tensorflow object."
|
||||
)
|
||||
|
||||
for key, value in encoded_inputs.items():
|
||||
encoded_inputs[key] = to_py_obj(value)
|
||||
|
||||
# # Convert padding_strategy in PaddingStrategy
|
||||
# padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
||||
# padding=padding, max_length=max_length, verbose=verbose
|
||||
# )
|
||||
|
||||
required_input = encoded_inputs["input_ids"]
|
||||
if required_input and not isinstance(required_input[0], (list, tuple)):
|
||||
# encoded_inputs = _pad(
|
||||
# encoded_inputs,
|
||||
# max_length=max_length,
|
||||
# # padding_strategy=padding_strategy,
|
||||
# pad_to_multiple_of=pad_to_multiple_of,
|
||||
# return_attention_mask=return_attention_mask,
|
||||
# )
|
||||
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
||||
|
||||
batch_size = len(required_input)
|
||||
assert all(
|
||||
len(v) == batch_size for v in encoded_inputs.values()
|
||||
), "Some items in the output dictionary have a different batch size than others."
|
||||
|
||||
# if padding_strategy == PaddingStrategy.LONGEST:
|
||||
# max_length = max(len(inputs) for inputs in required_input)
|
||||
# padding_strategy = PaddingStrategy.MAX_LENGTH
|
||||
|
||||
batch_outputs = {}
|
||||
for i in range(batch_size):
|
||||
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
||||
# outputs = self._pad(
|
||||
# inputs,
|
||||
# max_length=max_length,
|
||||
# # padding_strategy=padding_strategy,
|
||||
# pad_to_multiple_of=pad_to_multiple_of,
|
||||
# return_attention_mask=return_attention_mask,
|
||||
# )
|
||||
for key, value in inputs.items():
|
||||
if key not in batch_outputs:
|
||||
batch_outputs[key] = []
|
||||
batch_outputs[key].append(value)
|
||||
|
||||
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
||||
|
||||
|
||||
# def _pad(
|
||||
# self,
|
||||
# encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
||||
# max_length: Optional[int] = None,
|
||||
# padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
||||
# pad_to_multiple_of: Optional[int] = None,
|
||||
# return_attention_mask: Optional[bool] = None,
|
||||
# ) -> dict:
|
||||
# """
|
||||
# Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
||||
# Args:
|
||||
# encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
||||
# max_length: maximum length of the returned list and optionally padding length (see below).
|
||||
# Will truncate by taking into account the special tokens.
|
||||
# padding_strategy: PaddingStrategy to use for padding.
|
||||
# - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
||||
# - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
||||
# - PaddingStrategy.DO_NOT_PAD: Do not pad
|
||||
# The tokenizer padding sides are defined in self.padding_side:
|
||||
# - 'left': pads on the left of the sequences
|
||||
# - 'right': pads on the right of the sequences
|
||||
# pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
||||
# This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
||||
# >= 7.5 (Volta).
|
||||
# return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
||||
# """
|
||||
# # Load from model defaults
|
||||
# if return_attention_mask is None:
|
||||
# return_attention_mask = "attention_mask" in self.model_input_names
|
||||
|
||||
# required_input = encoded_inputs[self.model_input_names[0]]
|
||||
|
||||
# if padding_strategy == PaddingStrategy.LONGEST:
|
||||
# max_length = len(required_input)
|
||||
|
||||
# if (
|
||||
# max_length is not None
|
||||
# and pad_to_multiple_of is not None
|
||||
# and (max_length % pad_to_multiple_of != 0)
|
||||
# ):
|
||||
# max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
||||
|
||||
# needs_to_be_padded = (
|
||||
# padding_strategy != PaddingStrategy.DO_NOT_PAD
|
||||
# and len(required_input) != max_length
|
||||
# )
|
||||
|
||||
# if needs_to_be_padded:
|
||||
# difference = max_length - len(required_input)
|
||||
# if self.padding_side == "right":
|
||||
# if return_attention_mask:
|
||||
# encoded_inputs["attention_mask"] = [1] * len(required_input) + [
|
||||
# 0
|
||||
# ] * difference
|
||||
# if "token_type_ids" in encoded_inputs:
|
||||
# encoded_inputs["token_type_ids"] = (
|
||||
# encoded_inputs["token_type_ids"]
|
||||
# + [self.pad_token_type_id] * difference
|
||||
# )
|
||||
# if "special_tokens_mask" in encoded_inputs:
|
||||
# encoded_inputs["special_tokens_mask"] = (
|
||||
# encoded_inputs["special_tokens_mask"] + [1] * difference
|
||||
# )
|
||||
# encoded_inputs[self.model_input_names[0]] = (
|
||||
# required_input + [self.pad_token_id] * difference
|
||||
# )
|
||||
# elif self.padding_side == "left":
|
||||
# if return_attention_mask:
|
||||
# encoded_inputs["attention_mask"] = [0] * difference + [1] * len(
|
||||
# required_input
|
||||
# )
|
||||
# if "token_type_ids" in encoded_inputs:
|
||||
# encoded_inputs["token_type_ids"] = [
|
||||
# self.pad_token_type_id
|
||||
# ] * difference + encoded_inputs["token_type_ids"]
|
||||
# if "special_tokens_mask" in encoded_inputs:
|
||||
# encoded_inputs["special_tokens_mask"] = [
|
||||
# 1
|
||||
# ] * difference + encoded_inputs["special_tokens_mask"]
|
||||
# encoded_inputs[self.model_input_names[0]] = [
|
||||
# self.pad_token_id
|
||||
# ] * difference + required_input
|
||||
# else:
|
||||
# raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
||||
# elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
||||
# encoded_inputs["attention_mask"] = [1] * len(required_input)
|
||||
|
||||
# return encoded_inputs
|
||||
|
||||
|
||||
def _collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
|
||||
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
|
||||
# Tensorize if necessary.
|
||||
if isinstance(examples[0], (list, tuple)):
|
||||
examples = [torch.tensor(e, dtype=torch.long) for e in examples]
|
||||
|
||||
# Check if padding is necessary.
|
||||
length_of_first = examples[0].size(0)
|
||||
are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)
|
||||
if are_tensors_same_length and (
|
||||
pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0
|
||||
):
|
||||
return torch.stack(examples, dim=0)
|
||||
|
||||
# If yes, check if we have a `pad_token`.
|
||||
if tokenizer._pad_token is None:
|
||||
raise ValueError(
|
||||
"You are attempting to pad samples but the tokenizer you are using"
|
||||
f" ({tokenizer.__class__.__name__}) does not have a pad token."
|
||||
)
|
||||
|
||||
# Creating the full tensor and filling it with our data.
|
||||
max_length = max(x.size(0) for x in examples)
|
||||
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
||||
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
||||
result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
|
||||
for i, example in enumerate(examples):
|
||||
if tokenizer.padding_side == "right":
|
||||
result[i, : example.shape[0]] = example
|
||||
else:
|
||||
result[i, -example.shape[0] :] = example
|
||||
return result
|
||||
|
||||
|
||||
def to_py_obj(obj):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
return obj.detach().cpu().tolist()
|
||||
elif isinstance(obj, np.ndarray):
|
||||
return obj.tolist()
|
||||
else:
|
||||
return obj
|
272
my_data_collator.py
Normal file
272
my_data_collator.py
Normal file
@ -0,0 +1,272 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
NamedTuple,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
import tokenizers
|
||||
import torch
|
||||
from transformers import BatchEncoding
|
||||
|
||||
EncodedInput = List[int]
|
||||
|
||||
|
||||
@dataclass
|
||||
class MyDataCollatorForPreTraining:
|
||||
tokenizer: tokenizers.Tokenizer
|
||||
mlm: bool = True
|
||||
mlm_probability: float = 0.15
|
||||
pad_to_multiple_of: Optional[int] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.mlm and self.tokenizer.token_to_id("[MASK]") is None:
|
||||
raise ValueError(
|
||||
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
|
||||
"You should pass `mlm=False` to train on causal language modeling instead."
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self, examples: List[Union[List[int], torch.Tensor, Dict[str, torch.Tensor]]],
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
# Handle dict or lists with proper padding and conversion to tensor.
|
||||
if isinstance(examples[0], (dict, BatchEncoding)):
|
||||
batch = pad(
|
||||
encoded_inputs=examples,
|
||||
return_tensors="pt",
|
||||
pad_to_multiple_of=self.pad_to_multiple_of,
|
||||
)
|
||||
else:
|
||||
batch = {
|
||||
"input_ids": _collate_batch(
|
||||
examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of
|
||||
)
|
||||
}
|
||||
|
||||
# If special token mask has been preprocessed, pop it from the dict.
|
||||
special_tokens_mask = batch.pop("special_tokens_mask", None)
|
||||
if self.mlm:
|
||||
batch["input_ids"], batch["labels"] = self.mask_tokens(
|
||||
batch["input_ids"], special_tokens_mask=special_tokens_mask
|
||||
)
|
||||
return batch
|
||||
|
||||
def mask_tokens(
|
||||
self, inputs: torch.Tensor, special_tokens_mask: Optional[torch.Tensor] = None
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
|
||||
"""
|
||||
labels = inputs.clone()
|
||||
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
|
||||
probability_matrix = torch.full(labels.shape, self.mlm_probability)
|
||||
if special_tokens_mask is None:
|
||||
special_tokens_mask = [
|
||||
self.tokenizer.get_special_tokens_mask(
|
||||
val, already_has_special_tokens=True
|
||||
)
|
||||
for val in labels.tolist()
|
||||
]
|
||||
special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
|
||||
else:
|
||||
special_tokens_mask = special_tokens_mask.bool()
|
||||
|
||||
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
|
||||
masked_indices = torch.bernoulli(probability_matrix).bool()
|
||||
labels[~masked_indices] = -100 # We only compute loss on masked tokens
|
||||
|
||||
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
|
||||
indices_replaced = (
|
||||
torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
|
||||
)
|
||||
# inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(
|
||||
# self.tokenizer.mask_token
|
||||
# )
|
||||
inputs[indices_replaced] = self.tokenizer.token_to_id("[MASK]")
|
||||
|
||||
# 10% of the time, we replace masked input tokens with random word
|
||||
indices_random = (
|
||||
torch.bernoulli(torch.full(labels.shape, 0.5)).bool()
|
||||
& masked_indices
|
||||
& ~indices_replaced
|
||||
)
|
||||
random_words = torch.randint(
|
||||
self.tokenizer.get_vocab_size(), labels.shape, dtype=torch.long
|
||||
)
|
||||
inputs[indices_random] = random_words[indices_random]
|
||||
|
||||
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
|
||||
return inputs, labels
|
||||
|
||||
|
||||
def pad(
|
||||
encoded_inputs: Union[
|
||||
BatchEncoding,
|
||||
List[BatchEncoding],
|
||||
Dict[str, EncodedInput],
|
||||
Dict[str, List[EncodedInput]],
|
||||
List[Dict[str, EncodedInput]],
|
||||
],
|
||||
padding=True,
|
||||
max_length: Optional[int] = None,
|
||||
pad_to_multiple_of: Optional[int] = None,
|
||||
return_attention_mask: Optional[bool] = None,
|
||||
return_tensors=None,
|
||||
verbose: bool = True,
|
||||
) -> BatchEncoding:
|
||||
"""
|
||||
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
||||
in the batch.
|
||||
Padding side (left/right) padding token ids are defined at the tokenizer level (with ``self.padding_side``,
|
||||
``self.pad_token_id`` and ``self.pad_token_type_id``)
|
||||
.. note::
|
||||
If the ``encoded_inputs`` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
||||
result will use the same type unless you provide a different tensor type with ``return_tensors``. In the
|
||||
case of PyTorch tensors, you will lose the specific device of your tensors however.
|
||||
Args:
|
||||
encoded_inputs (:class:`~transformers.BatchEncoding`, list of :class:`~transformers.BatchEncoding`, :obj:`Dict[str, List[int]]`, :obj:`Dict[str, List[List[int]]` or :obj:`List[Dict[str, List[int]]]`):
|
||||
Tokenized inputs. Can represent one input (:class:`~transformers.BatchEncoding` or :obj:`Dict[str,
|
||||
List[int]]`) or a batch of tokenized inputs (list of :class:`~transformers.BatchEncoding`, `Dict[str,
|
||||
List[List[int]]]` or `List[Dict[str, List[int]]]`) so you can use this method during preprocessing as
|
||||
well as in a PyTorch Dataloader collate function.
|
||||
Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
||||
see the note above for the return type.
|
||||
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
||||
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
||||
index) among:
|
||||
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
|
||||
single sequence if provided).
|
||||
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
||||
maximum acceptable input length for the model if that argument is not provided.
|
||||
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
||||
different lengths).
|
||||
max_length (:obj:`int`, `optional`):
|
||||
Maximum length of the returned list and optionally padding length (see above).
|
||||
pad_to_multiple_of (:obj:`int`, `optional`):
|
||||
If set will pad the sequence to a multiple of the provided value.
|
||||
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
||||
>= 7.5 (Volta).
|
||||
return_attention_mask (:obj:`bool`, `optional`):
|
||||
Whether to return the attention mask. If left to the default, will return the attention mask according
|
||||
to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute.
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
|
||||
If set, will return tensors instead of list of python integers. Acceptable values are:
|
||||
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
|
||||
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
|
||||
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
|
||||
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not to print more information and warnings.
|
||||
"""
|
||||
# If we have a list of dicts, let's convert it in a dict of lists
|
||||
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
||||
if isinstance(encoded_inputs, (list, tuple)) and isinstance(
|
||||
encoded_inputs[0], (dict, BatchEncoding)
|
||||
):
|
||||
encoded_inputs = {
|
||||
key: [example[key] for example in encoded_inputs]
|
||||
for key in encoded_inputs[0].keys()
|
||||
}
|
||||
|
||||
required_input = encoded_inputs["input_ids"]
|
||||
|
||||
if not required_input:
|
||||
if return_attention_mask:
|
||||
encoded_inputs["attention_mask"] = []
|
||||
return encoded_inputs
|
||||
|
||||
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
||||
# and rebuild them afterwards if no return_tensors is specified
|
||||
# Note that we lose the specific device the tensor may be on for PyTorch
|
||||
|
||||
first_element = required_input[0]
|
||||
if isinstance(first_element, (list, tuple)):
|
||||
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
||||
index = 0
|
||||
while len(required_input[index]) == 0:
|
||||
index += 1
|
||||
if index < len(required_input):
|
||||
first_element = required_input[index][0]
|
||||
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
||||
if not isinstance(first_element, (int, list, tuple)):
|
||||
if isinstance(first_element, torch.Tensor):
|
||||
return_tensors = "pt" if return_tensors is None else return_tensors
|
||||
elif isinstance(first_element, np.ndarray):
|
||||
return_tensors = "np" if return_tensors is None else return_tensors
|
||||
else:
|
||||
raise ValueError(
|
||||
f"type of {first_element} unknown: {type(first_element)}. "
|
||||
f"Should be one of a python, numpy, pytorch or tensorflow object."
|
||||
)
|
||||
|
||||
for key, value in encoded_inputs.items():
|
||||
encoded_inputs[key] = to_py_obj(value)
|
||||
|
||||
required_input = encoded_inputs["input_ids"]
|
||||
if required_input and not isinstance(required_input[0], (list, tuple)):
|
||||
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
||||
|
||||
batch_size = len(required_input)
|
||||
assert all(
|
||||
len(v) == batch_size for v in encoded_inputs.values()
|
||||
), "Some items in the output dictionary have a different batch size than others."
|
||||
|
||||
batch_outputs = {}
|
||||
for i in range(batch_size):
|
||||
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
||||
for key, value in inputs.items():
|
||||
if key not in batch_outputs:
|
||||
batch_outputs[key] = []
|
||||
batch_outputs[key].append(value)
|
||||
|
||||
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
||||
|
||||
|
||||
def _collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):
|
||||
"""Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary."""
|
||||
# Tensorize if necessary.
|
||||
if isinstance(examples[0], (list, tuple)):
|
||||
examples = [torch.tensor(e, dtype=torch.long) for e in examples]
|
||||
|
||||
# Check if padding is necessary.
|
||||
length_of_first = examples[0].size(0)
|
||||
are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)
|
||||
if are_tensors_same_length and (
|
||||
pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0
|
||||
):
|
||||
return torch.stack(examples, dim=0)
|
||||
|
||||
# If yes, check if we have a `pad_token`.
|
||||
if tokenizer._pad_token is None:
|
||||
raise ValueError(
|
||||
"You are attempting to pad samples but the tokenizer you are using"
|
||||
f" ({tokenizer.__class__.__name__}) does not have a pad token."
|
||||
)
|
||||
|
||||
# Creating the full tensor and filling it with our data.
|
||||
max_length = max(x.size(0) for x in examples)
|
||||
if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
||||
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
||||
result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)
|
||||
for i, example in enumerate(examples):
|
||||
if tokenizer.padding_side == "right":
|
||||
result[i, : example.shape[0]] = example
|
||||
else:
|
||||
result[i, -example.shape[0] :] = example
|
||||
return result
|
||||
|
||||
|
||||
def to_py_obj(obj):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
return obj.detach().cpu().tolist()
|
||||
elif isinstance(obj, np.ndarray):
|
||||
return obj.tolist()
|
||||
else:
|
||||
return obj
|
421
my_run_mlm_no_trainer.py
Normal file
421
my_run_mlm_no_trainer.py
Normal file
@ -0,0 +1,421 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 Alan Zhao. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# """
|
||||
# Pre-train the BERT on a dataset without using HuggingFace Trainer.
|
||||
# """
|
||||
# You can also adapt this script on your own mlm task. Pointers for this are left as comments.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
import tokenizers
|
||||
import torch
|
||||
import transformers
|
||||
from accelerate import Accelerator
|
||||
from datasets import load_dataset
|
||||
from torch.nn import DataParallel
|
||||
from torch.utils.data.dataloader import DataLoader
|
||||
from tqdm.auto import tqdm
|
||||
from transformers import (
|
||||
CONFIG_MAPPING,
|
||||
MODEL_MAPPING,
|
||||
AdamW,
|
||||
AutoConfig,
|
||||
AutoModelForMaskedLM,
|
||||
AutoTokenizer,
|
||||
BatchEncoding,
|
||||
BertConfig,
|
||||
BertForPreTraining,
|
||||
DataCollatorForLanguageModeling,
|
||||
SchedulerType,
|
||||
get_scheduler,
|
||||
set_seed,
|
||||
)
|
||||
|
||||
from my_data_collator import MyDataCollatorForPreTraining
|
||||
from process_data.utils import CURRENT_DATA_BASE
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
||||
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Finetune a transformers model on a Masked Language Modeling task"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--per_device_train_batch_size",
|
||||
type=int,
|
||||
default=16,
|
||||
help="Batch size (per device) for the training dataloader.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--per_device_eval_batch_size",
|
||||
type=int,
|
||||
default=64,
|
||||
help="Batch size (per device) for the evaluation dataloader.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
default=5e-5,
|
||||
help="Initial learning rate (after the potential warmup period) to use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--weight_decay", type=float, default=0.0, help="Weight decay to use."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_train_epochs",
|
||||
type=int,
|
||||
default=40,
|
||||
help="Total number of training epochs to perform.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_train_steps",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lr_scheduler_type",
|
||||
type=SchedulerType,
|
||||
default="linear",
|
||||
help="The scheduler type to use.",
|
||||
choices=[
|
||||
"linear",
|
||||
"cosine",
|
||||
"cosine_with_restarts",
|
||||
"polynomial",
|
||||
"constant",
|
||||
"constant_with_warmup",
|
||||
],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_warmup_steps",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of steps for the warmup in the lr scheduler.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_dir", type=str, default=None, help="Where to store the final model."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seed", type=int, default=None, help="A seed for reproducible training."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--preprocessing_num_workers",
|
||||
type=int,
|
||||
default=None,
|
||||
help="The number of processes to use for the preprocessing.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mlm_probability",
|
||||
type=float,
|
||||
default=0.15,
|
||||
help="Ratio of tokens to mask for masked language modeling loss",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gradient_accumulation_steps",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--eval_every_steps",
|
||||
type=int,
|
||||
default=5000,
|
||||
help="Number of steps before evaluating the model.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.output_dir is not None:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
|
||||
accelerator = Accelerator()
|
||||
# Make one log on every process with the configuration for debugging.
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=logging.INFO,
|
||||
)
|
||||
logger.info(accelerator.state)
|
||||
|
||||
# Setup logging, we only want one process per machine to log things on the screen.
|
||||
# accelerator.is_local_main_process is only True for one process per machine.
|
||||
logger.setLevel(
|
||||
logging.INFO if accelerator.is_local_main_process else logging.ERROR
|
||||
)
|
||||
if accelerator.is_local_main_process:
|
||||
datasets.utils.logging.set_verbosity_warning()
|
||||
transformers.utils.logging.set_verbosity_info()
|
||||
else:
|
||||
datasets.utils.logging.set_verbosity_error()
|
||||
transformers.utils.logging.set_verbosity_error()
|
||||
|
||||
# If passed along, set the training seed now.
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed)
|
||||
|
||||
# we take control of the load of dataset by oursevles
|
||||
# there will be several json file for training
|
||||
# `raw_dataset` has two features:
|
||||
# `text`: "sentA\tsentB"
|
||||
# `is_next`: 0 or 1
|
||||
# raw_datasets = load_dataset(
|
||||
# "json",
|
||||
# data_files={
|
||||
# "train": "/home/ming/malware/inst2vec_bert/data/test_lm/inst.json",
|
||||
# "validation": "/home/ming/malware/inst2vec_bert/data/test_lm/inst.json",
|
||||
# },
|
||||
# field="data",
|
||||
# )
|
||||
train_files = [
|
||||
os.path.join(CURRENT_DATA_BASE, "inst.1.{}.json".format(i)) for i in range(128)
|
||||
]
|
||||
valid_file = "/home/ming/malware/inst2vec_bert/data/test_lm/inst.json"
|
||||
raw_datasets = load_dataset(
|
||||
"json",
|
||||
data_files={"train": train_files, "validation": valid_file,},
|
||||
field="data",
|
||||
)
|
||||
|
||||
# we use the tokenizer previously trained on the dataset above
|
||||
tokenizer = tokenizers.Tokenizer.from_file(
|
||||
os.path.join(CURRENT_DATA_BASE, "tokenizer-inst.1.json")
|
||||
)
|
||||
|
||||
# NOTE: have to promise the `length` here is consistent with the one used in `train_my_tokenizer.py`
|
||||
tokenizer.enable_padding(
|
||||
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=32
|
||||
)
|
||||
|
||||
# NOTE: `max_position_embeddings` here should be consistent with `length` above
|
||||
# we use a much smaller BERT, config is:
|
||||
config = BertConfig(
|
||||
vocab_size=tokenizer.get_vocab_size(),
|
||||
hidden_size=96,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=384,
|
||||
max_position_embeddings=32,
|
||||
)
|
||||
|
||||
# initalize a new BERT for pre-training
|
||||
model = BertForPreTraining(config)
|
||||
|
||||
# Preprocessing the datasets.
|
||||
column_names = raw_datasets["train"].column_names
|
||||
text_column_name = "text" if "text" in column_names else column_names[0]
|
||||
|
||||
# First we aplly `tokenize_function` on the dataset.
|
||||
def tokenize_function(examples):
|
||||
text = [tuple(sent) for sent in examples["text"]]
|
||||
encoded_inputs = {}
|
||||
results = tokenizer.encode_batch(text)
|
||||
encoded_inputs["input_ids"] = [result.ids for result in results]
|
||||
encoded_inputs["token_type_ids"] = [result.type_ids for result in results]
|
||||
encoded_inputs["special_tokens_mask"] = [
|
||||
result.special_tokens_mask for result in results
|
||||
]
|
||||
# according to the document of BERT in HuggingFace
|
||||
# 0: is
|
||||
# 1: is not
|
||||
encoded_inputs["next_sentence_label"] = [
|
||||
1 - label for label in examples["is_next"]
|
||||
]
|
||||
# use `np` rather than `pt` in case of reporting of error
|
||||
batch_outputs = BatchEncoding(
|
||||
encoded_inputs, tensor_type="np", prepend_batch_axis=False,
|
||||
)
|
||||
return batch_outputs
|
||||
|
||||
tokenized_datasets = raw_datasets.map(
|
||||
tokenize_function,
|
||||
batched=True,
|
||||
num_proc=args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
)
|
||||
|
||||
train_dataset = tokenized_datasets["train"]
|
||||
eval_dataset = tokenized_datasets["validation"]
|
||||
|
||||
# Log a few random samples from the training set:
|
||||
for index in random.sample(range(len(train_dataset)), 3):
|
||||
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
||||
|
||||
# Data collator
|
||||
# This one will take care of randomly masking the tokens.
|
||||
data_collator = MyDataCollatorForPreTraining(
|
||||
tokenizer=tokenizer, mlm_probability=args.mlm_probability
|
||||
)
|
||||
|
||||
# DataLoaders creation:
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
shuffle=True,
|
||||
collate_fn=data_collator,
|
||||
batch_size=args.per_device_train_batch_size,
|
||||
)
|
||||
eval_dataloader = DataLoader(
|
||||
eval_dataset,
|
||||
collate_fn=data_collator,
|
||||
batch_size=args.per_device_eval_batch_size,
|
||||
)
|
||||
|
||||
# Optimizer
|
||||
# Split weights in two groups, one with weight decay and the other not.
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [
|
||||
p
|
||||
for n, p in model.named_parameters()
|
||||
if not any(nd in n for nd in no_decay)
|
||||
],
|
||||
"weight_decay": args.weight_decay,
|
||||
},
|
||||
{
|
||||
"params": [
|
||||
p
|
||||
for n, p in model.named_parameters()
|
||||
if any(nd in n for nd in no_decay)
|
||||
],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
|
||||
|
||||
# Prepare everything with our `accelerator`.
|
||||
# model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
|
||||
# model, optimizer, train_dataloader, eval_dataloader
|
||||
# )
|
||||
model, optimizer, train_dataloader = accelerator.prepare(
|
||||
model, optimizer, train_dataloader
|
||||
)
|
||||
|
||||
model = DataParallel(model)
|
||||
# model.to("cuda:0")
|
||||
|
||||
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
|
||||
# shorter in multiprocess)
|
||||
|
||||
# Scheduler and math around the number of training steps.
|
||||
num_update_steps_per_epoch = math.ceil(
|
||||
len(train_dataloader) / args.gradient_accumulation_steps
|
||||
)
|
||||
if args.max_train_steps is None:
|
||||
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||
else:
|
||||
args.num_train_epochs = math.ceil(
|
||||
args.max_train_steps / num_update_steps_per_epoch
|
||||
)
|
||||
|
||||
lr_scheduler = get_scheduler(
|
||||
name=args.lr_scheduler_type,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=args.num_warmup_steps,
|
||||
num_training_steps=args.max_train_steps,
|
||||
)
|
||||
|
||||
# Train!
|
||||
total_batch_size = (
|
||||
args.per_device_train_batch_size
|
||||
* accelerator.num_processes
|
||||
* args.gradient_accumulation_steps
|
||||
)
|
||||
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(f" Num examples = {len(train_dataset)}")
|
||||
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
||||
logger.info(
|
||||
f" Instantaneous batch size per device = {args.per_device_train_batch_size}"
|
||||
)
|
||||
logger.info(
|
||||
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
|
||||
)
|
||||
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
||||
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
||||
logger.info(f" Evalute every {args.eval_every_steps} steps")
|
||||
# Only show the progress bar once on each machine.
|
||||
progress_bar = tqdm(
|
||||
range(args.max_train_steps), disable=not accelerator.is_local_main_process
|
||||
)
|
||||
completed_steps = 0
|
||||
|
||||
for epoch in range(args.num_train_epochs):
|
||||
model.train()
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
accelerator.backward(loss)
|
||||
if (
|
||||
step % args.gradient_accumulation_steps == 0
|
||||
or step == len(train_dataloader) - 1
|
||||
):
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
progress_bar.update(1)
|
||||
completed_steps += 1
|
||||
|
||||
if completed_steps >= args.max_train_steps:
|
||||
break
|
||||
|
||||
if completed_steps % args.eval_every_steps == 0:
|
||||
model.eval()
|
||||
losses = []
|
||||
for step, batch in enumerate(eval_dataloader):
|
||||
with torch.no_grad():
|
||||
outputs = model(**batch)
|
||||
|
||||
loss = outputs.loss
|
||||
losses.append(
|
||||
accelerator.gather(loss.repeat(args.per_device_eval_batch_size))
|
||||
)
|
||||
|
||||
losses = torch.cat(losses)
|
||||
# losses = losses[: len(eval_dataset)]
|
||||
try:
|
||||
perplexity = math.exp(torch.mean(losses))
|
||||
except OverflowError:
|
||||
perplexity = float("inf")
|
||||
|
||||
logger.info(f"steps {completed_steps}: perplexity: {perplexity}")
|
||||
model.train()
|
||||
|
||||
if args.output_dir is not None:
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
29
process_data/check_length.py
Normal file
29
process_data/check_length.py
Normal file
@ -0,0 +1,29 @@
|
||||
import os
|
||||
|
||||
from utils import ORIGINAL_DATA_BASE, read_file
|
||||
|
||||
|
||||
def check(filename):
|
||||
sents = read_file(filename)
|
||||
result = 0
|
||||
for sent in sents:
|
||||
result = max(result, len(sent[-1].replace("\t", " ").split()))
|
||||
print("The longest sentence in {} has {} words".format(filename, result))
|
||||
return result
|
||||
|
||||
|
||||
def main():
|
||||
longest = 0
|
||||
# for i in range(6):
|
||||
for i in [1]:
|
||||
for group in ("pos", "neg"):
|
||||
filename = os.path.join(
|
||||
ORIGINAL_DATA_BASE, "inst.{}.{}.txt".format(i, group)
|
||||
)
|
||||
longest = max(check(filename), longest)
|
||||
print("The longest sentence in all files has {} words.".format(longest))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
29
process_data/convert_space_format.py
Normal file
29
process_data/convert_space_format.py
Normal file
@ -0,0 +1,29 @@
|
||||
import os
|
||||
|
||||
from utils import ORIGINAL_DATA_BASE, read_file
|
||||
|
||||
|
||||
def write_file(data, filename):
|
||||
print("Writing data into {}...".format(filename))
|
||||
with open(filename, "w", encoding="utf-8") as fout:
|
||||
for sent in data:
|
||||
fout.write(sent.replace("<space>", "SPACE"))
|
||||
|
||||
|
||||
def convert(fin, fout):
|
||||
print("Start the replacement task for {}...".format(fin))
|
||||
# filename = "/home/ming/malware/data/elfasm_inst_pairs/linux32_00xxxx.all"
|
||||
sents = read_file(fin)
|
||||
write_file(sents, fout)
|
||||
|
||||
|
||||
def main():
|
||||
# for i in range(6):
|
||||
for i in [1]:
|
||||
fin = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(i))
|
||||
fout = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.pos.txt".format(i))
|
||||
convert(fin, fout)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
54
process_data/count_word_for_vocab.py
Normal file
54
process_data/count_word_for_vocab.py
Normal file
@ -0,0 +1,54 @@
|
||||
import os
|
||||
from multiprocessing import Pool, Process, Queue
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils import ORIGINAL_DATA_BASE, read_file
|
||||
|
||||
q = Queue(128)
|
||||
BASE = 4600000
|
||||
|
||||
|
||||
def counter_worker(sents):
|
||||
cnt = set()
|
||||
for sent in tqdm(sents):
|
||||
cnt = cnt.union(set(sent[:-1].replace("\t", " ").split()))
|
||||
print("Process {} get {} words".format(os.getpid(), len(cnt)))
|
||||
q.put(cnt)
|
||||
return
|
||||
|
||||
|
||||
def counter(filename):
|
||||
sents = read_file(filename)
|
||||
|
||||
p = Pool(36)
|
||||
|
||||
for i in range(64):
|
||||
p.apply_async(counter_worker, args=(sents[i * BASE : (i + 1) * BASE],))
|
||||
print("Waiting for all sub-processes done...")
|
||||
p.close()
|
||||
p.join()
|
||||
print("All subprocess done.")
|
||||
cnt = set()
|
||||
# for sent in tqdm(sents):
|
||||
# cnt += set(sent[-1].replace("\t", " ").split())
|
||||
for _ in tqdm(range(64)):
|
||||
cnt = cnt.union(q.get())
|
||||
print("There are {} charcters in {}".format(len(cnt), filename))
|
||||
return cnt
|
||||
|
||||
|
||||
def main():
|
||||
cnt = set()
|
||||
# for i in range(6):
|
||||
for i in [1]:
|
||||
for group in ["pos", "neg"]:
|
||||
filename = os.path.join(
|
||||
ORIGINAL_DATA_BASE, "inst.{}.{}.txt".format(i, group)
|
||||
)
|
||||
cnt += counter(filename)
|
||||
print("There are {} charcters in all files".format(len(cnt)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
34
process_data/create_negative_examples.py
Normal file
34
process_data/create_negative_examples.py
Normal file
@ -0,0 +1,34 @@
|
||||
import os
|
||||
from random import randint
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils import ORIGINAL_DATA_BASE, read_file
|
||||
|
||||
|
||||
def create(pos, neg, tgt):
|
||||
pos_sents = read_file(pos)
|
||||
|
||||
neg_sents = read_file(neg)
|
||||
neg_length = len(neg_sents)
|
||||
print("Start writing negative examples to {}...".format(tgt))
|
||||
with open(tgt, "w", encoding="utf-8") as fout:
|
||||
for sent in tqdm(pos_sents):
|
||||
first = sent.split("\t")[0]
|
||||
index = randint(0, neg_length - 1)
|
||||
pair = neg_sents[index].split("\t")[randint(0, 1)].replace("\n", "")
|
||||
fout.write(first + "\t" + pair + "\n")
|
||||
|
||||
|
||||
def main():
|
||||
# for i in range(6):
|
||||
for i in [1]:
|
||||
j = (i + 1) % 6
|
||||
pos = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(i))
|
||||
neg = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(j))
|
||||
tgt = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.neg.txt".format(i))
|
||||
create(pos, neg, tgt)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
91
process_data/merge_examples_to_json.py
Normal file
91
process_data/merge_examples_to_json.py
Normal file
@ -0,0 +1,91 @@
|
||||
import gc
|
||||
import json
|
||||
import os
|
||||
from multiprocessing import Pool, Process, Queue
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils import CURRENT_DATA_BASE, ORIGINAL_DATA_BASE, read_file
|
||||
|
||||
BASE = 4600000
|
||||
|
||||
|
||||
def write_worker(sents, json_file, index):
|
||||
examples = []
|
||||
for sent in tqdm(sents):
|
||||
tmp = sent[:-1].split("\t")
|
||||
examples.append({"text": tuple(tmp[1:]), "is_next": int(tmp[0])})
|
||||
examples[-1]["text"] = tuple(examples[-1]["text"])
|
||||
|
||||
print("Writing to {}...".format(json_file + "{}.json".format(index)))
|
||||
results = {"data": examples}
|
||||
with open(json_file + "{}.json".format(index), "w") as f:
|
||||
json.dump(results, f)
|
||||
|
||||
|
||||
def merge_to_json(pos, neg, json_file):
|
||||
sents = read_file(pos)
|
||||
|
||||
p = Pool(36)
|
||||
|
||||
for i in range(64):
|
||||
p.apply_async(
|
||||
write_worker, args=(sents[i * BASE : (i + 1) * BASE], json_file, i,)
|
||||
)
|
||||
print("Waiting for all sub-processes done...")
|
||||
p.close()
|
||||
p.join()
|
||||
print("All subprocess done.")
|
||||
|
||||
# length = len(sents)
|
||||
# base = length // 20000000 + 1
|
||||
|
||||
# for i in tqdm(range(length)):
|
||||
# examples = []
|
||||
# tmp = sents[i][:-1].split("\t")
|
||||
# examples.append({"text": tuple(tmp[1:]), "is_next": int(tmp[0])})
|
||||
# examples[i]["text"] = tuple(examples[i]["text"])
|
||||
# index = i // 20000000
|
||||
# print("Writing to {}...".format(json_file + "{}.json".format(index)))
|
||||
# with open(json_file + "{}.json".format(index), "w") as f:
|
||||
# json.dump(examples, f)
|
||||
|
||||
del sents
|
||||
gc.collect()
|
||||
|
||||
sents = read_file(neg)
|
||||
|
||||
p = Pool(8)
|
||||
|
||||
for i in range(64):
|
||||
p.apply_async(
|
||||
write_worker, args=(sents[i * BASE : (i + 1) * BASE], json_file, 64 + i,)
|
||||
)
|
||||
print("Waiting for all sub-processes done...")
|
||||
p.close()
|
||||
p.join()
|
||||
print("All subprocess done.")
|
||||
|
||||
# length = len(sents)
|
||||
# for i in tqdm(range(length)):
|
||||
# examples = []
|
||||
# tmp = sents[i][:-1].split("\t")
|
||||
# examples.append({"text": tuple(tmp[1:]), "is_next": int(tmp[0])})
|
||||
# examples[i]["text"] = tuple(examples[i]["text"])
|
||||
# index = i // 20000000
|
||||
# print("Writing to {}...".format(json_file + "{}.json".format(base + index)))
|
||||
# with open(json_file + "{}.json".format(base + index), "w") as f:
|
||||
# json.dump(examples, f)
|
||||
|
||||
|
||||
def main():
|
||||
# for i in range(6):
|
||||
for i in [1]:
|
||||
pos = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.pos.label.txt".format(i))
|
||||
neg = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.neg.label.txt".format(i))
|
||||
json_file = os.path.join(CURRENT_DATA_BASE, "inst.{}.".format(i))
|
||||
merge_to_json(pos, neg, json_file)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
22
process_data/readme.md
Normal file
22
process_data/readme.md
Normal file
@ -0,0 +1,22 @@
|
||||
# Pre-processing steps
|
||||
### 1. run `convert_space_format.py`
|
||||
Convert the string `<space>` to `SPACE`
|
||||
|
||||
### 2. run `create_negtive_examples.py`
|
||||
We use the next file of the current file as its negative examples, which is apparently rational.
|
||||
|
||||
Specifically, for each instruction in the current positive file, we randomly choose a line in its next file and select one of two instructions in the line as its negative example.
|
||||
|
||||
### 3. run `merge_examples_to_json.py`
|
||||
We dump the positive and negative examples with their corresponding labels into several json files.
|
||||
Each json file contains 20m lines of examples.
|
||||
|
||||
### 4. run `check_length.py`
|
||||
We will specify the length padded to when we use the tokenizer, `tokenizer.enable_padding(..., length=)`.
|
||||
|
||||
So we need to know the longest sentences in the dataset.
|
||||
|
||||
### 5. run `count_word_for_vocab.py`
|
||||
Similarly, we also need to specify the size of vocabulary when we train the tokenizer, `WordLevelTrainer(vocab_size=, ...)`.
|
||||
|
||||
So we need to know how many characters in the dataset.
|
11
process_data/utils.py
Normal file
11
process_data/utils.py
Normal file
@ -0,0 +1,11 @@
|
||||
import os
|
||||
|
||||
ORIGINAL_DATA_BASE = "/home/ming/malware/data/elfasm_inst_pairs"
|
||||
CURRENT_DATA_BASE = "/home/ming/malware/inst2vec_bert/data/asm_bert"
|
||||
|
||||
|
||||
def read_file(filename):
|
||||
print("Reading data from {}...".format(filename))
|
||||
with open(filename, "r", encoding="utf-8") as fin:
|
||||
return fin.readlines()
|
||||
|
672
run_mlm_no_trainer.py
Normal file
672
run_mlm_no_trainer.py
Normal file
@ -0,0 +1,672 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# """
|
||||
# Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...)
|
||||
# on a text file or a dataset without using HuggingFace Trainer.
|
||||
# Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
||||
# https://huggingface.co/models?filter=masked-lm
|
||||
# """
|
||||
# You can also adapt this script on your own mlm task. Pointers for this are left as comments.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
import tokenizers
|
||||
import torch
|
||||
import transformers
|
||||
from accelerate import Accelerator
|
||||
from datasets import load_dataset
|
||||
from torch.utils.data.dataloader import DataLoader
|
||||
from tqdm.auto import tqdm
|
||||
from transformers import (
|
||||
CONFIG_MAPPING,
|
||||
MODEL_MAPPING,
|
||||
AdamW,
|
||||
AutoConfig,
|
||||
AutoModelForMaskedLM,
|
||||
AutoTokenizer,
|
||||
BatchEncoding,
|
||||
BertConfig,
|
||||
BertForPreTraining,
|
||||
DataCollatorForLanguageModeling,
|
||||
SchedulerType,
|
||||
get_scheduler,
|
||||
set_seed,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
||||
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Finetune a transformers model on a Masked Language Modeling task"
|
||||
)
|
||||
# parser.add_argument(
|
||||
# "--dataset_name",
|
||||
# type=str,
|
||||
# default=None,
|
||||
# help="The name of the dataset to use (via the datasets library).",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--dataset_config_name",
|
||||
# type=str,
|
||||
# default=None,
|
||||
# help="The configuration name of the dataset to use (via the datasets library).",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--train_file",
|
||||
# type=str,
|
||||
# default=None,
|
||||
# help="A csv or a json file containing the training data.",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--validation_file",
|
||||
# type=str,
|
||||
# default=None,
|
||||
# help="A csv or a json file containing the validation data.",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--validation_split_percentage",
|
||||
# default=5,
|
||||
# help="The percentage of the train set used as validation set in case there's no validation split",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--pad_to_max_length",
|
||||
# action="store_true",
|
||||
# help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--model_name_or_path",
|
||||
# type=str,
|
||||
# help="Path to pretrained model or model identifier from huggingface.co/models.",
|
||||
# required=True,
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--config_name",
|
||||
# type=str,
|
||||
# default=None,
|
||||
# help="Pretrained config name or path if not the same as model_name",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--tokenizer_name",
|
||||
# type=str,
|
||||
# default=None,
|
||||
# help="Pretrained tokenizer name or path if not the same as model_name",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--use_slow_tokenizer",
|
||||
# action="store_true",
|
||||
# help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
|
||||
# )
|
||||
parser.add_argument(
|
||||
"--per_device_train_batch_size",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Batch size (per device) for the training dataloader.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--per_device_eval_batch_size",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Batch size (per device) for the evaluation dataloader.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
default=5e-5,
|
||||
help="Initial learning rate (after the potential warmup period) to use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--weight_decay", type=float, default=0.0, help="Weight decay to use."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_train_epochs",
|
||||
type=int,
|
||||
default=40,
|
||||
help="Total number of training epochs to perform.",
|
||||
)
|
||||
# parser.add_argument(
|
||||
# "--max_train_steps",
|
||||
# type=int,
|
||||
# default=None,
|
||||
# help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--gradient_accumulation_steps",
|
||||
# type=int,
|
||||
# default=1,
|
||||
# help="Number of updates steps to accumulate before performing a backward/update pass.",
|
||||
# )
|
||||
parser.add_argument(
|
||||
"--lr_scheduler_type",
|
||||
type=SchedulerType,
|
||||
default="linear",
|
||||
help="The scheduler type to use.",
|
||||
choices=[
|
||||
"linear",
|
||||
"cosine",
|
||||
"cosine_with_restarts",
|
||||
"polynomial",
|
||||
"constant",
|
||||
"constant_with_warmup",
|
||||
],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_warmup_steps",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of steps for the warmup in the lr scheduler.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_dir", type=str, default=None, help="Where to store the final model."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seed", type=int, default=None, help="A seed for reproducible training."
|
||||
)
|
||||
# parser.add_argument(
|
||||
# "--model_type",
|
||||
# type=str,
|
||||
# default=None,
|
||||
# help="Model type to use if training from scratch.",
|
||||
# choices=MODEL_TYPES,
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--max_seq_length",
|
||||
# type=int,
|
||||
# default=None,
|
||||
# help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated.",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--line_by_line",
|
||||
# type=bool,
|
||||
# default=False,
|
||||
# help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.",
|
||||
# )
|
||||
parser.add_argument(
|
||||
"--preprocessing_num_workers",
|
||||
type=int,
|
||||
default=None,
|
||||
help="The number of processes to use for the preprocessing.",
|
||||
)
|
||||
# parser.add_argument(
|
||||
# "--overwrite_cache",
|
||||
# type=bool,
|
||||
# default=False,
|
||||
# help="Overwrite the cached training and evaluation sets",
|
||||
# )
|
||||
parser.add_argument(
|
||||
"--mlm_probability",
|
||||
type=float,
|
||||
default=0.15,
|
||||
help="Ratio of tokens to mask for masked language modeling loss",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Sanity checks
|
||||
# if (
|
||||
# args.dataset_name is None
|
||||
# and args.train_file is None
|
||||
# and args.validation_file is None
|
||||
# ):
|
||||
# raise ValueError("Need either a dataset name or a training/validation file.")
|
||||
# else:
|
||||
# if args.train_file is not None:
|
||||
# extension = args.train_file.split(".")[-1]
|
||||
# assert extension in [
|
||||
# "csv",
|
||||
# "json",
|
||||
# "txt",
|
||||
# ], "`train_file` should be a csv, json or txt file."
|
||||
# if args.validation_file is not None:
|
||||
# extension = args.validation_file.split(".")[-1]
|
||||
# assert extension in [
|
||||
# "csv",
|
||||
# "json",
|
||||
# "txt",
|
||||
# ], "`validation_file` should be a csv, json or txt file."
|
||||
|
||||
if args.output_dir is not None:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
|
||||
accelerator = Accelerator()
|
||||
# Make one log on every process with the configuration for debugging.
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=logging.INFO,
|
||||
)
|
||||
logger.info(accelerator.state)
|
||||
|
||||
# Setup logging, we only want one process per machine to log things on the screen.
|
||||
# accelerator.is_local_main_process is only True for one process per machine.
|
||||
logger.setLevel(
|
||||
logging.INFO if accelerator.is_local_main_process else logging.ERROR
|
||||
)
|
||||
if accelerator.is_local_main_process:
|
||||
datasets.utils.logging.set_verbosity_warning()
|
||||
transformers.utils.logging.set_verbosity_info()
|
||||
else:
|
||||
datasets.utils.logging.set_verbosity_error()
|
||||
transformers.utils.logging.set_verbosity_error()
|
||||
|
||||
# If passed along, set the training seed now.
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed)
|
||||
|
||||
# # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
||||
# # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
||||
# # (the dataset will be downloaded automatically from the datasets Hub).
|
||||
# #
|
||||
# # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
||||
# # 'text' is found. You can easily tweak this behavior (see below).
|
||||
# #
|
||||
# # In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
||||
# # download the dataset.
|
||||
# if args.dataset_name is not None:
|
||||
# # Downloading and loading a dataset from the hub.
|
||||
# raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
|
||||
# if "validation" not in raw_datasets.keys():
|
||||
# raw_datasets["validation"] = load_dataset(
|
||||
# args.dataset_name,
|
||||
# args.dataset_config_name,
|
||||
# split=f"train[:{args.validation_split_percentage}%]",
|
||||
# )
|
||||
# raw_datasets["train"] = load_dataset(
|
||||
# args.dataset_name,
|
||||
# args.dataset_config_name,
|
||||
# split=f"train[{args.validation_split_percentage}%:]",
|
||||
# )
|
||||
# else:
|
||||
# data_files = {}
|
||||
# if args.train_file is not None:
|
||||
# data_files["train"] = args.train_file
|
||||
# if args.validation_file is not None:
|
||||
# data_files["validation"] = args.validation_file
|
||||
# extension = args.train_file.split(".")[-1]
|
||||
# if extension == "txt":
|
||||
# extension = "text"
|
||||
# raw_datasets = load_dataset(extension, data_files=data_files)
|
||||
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
|
||||
# we use dataset in json format,
|
||||
# `raw_dataset` has two features: `text`:"sentA\tsentB" and `is_next`:0 or 1
|
||||
|
||||
# we take control of the load of dataset by oursevles
|
||||
# there will be several json file for training
|
||||
# raw_datasets = load_dataset("json", data_files=args.train_file, field="data")
|
||||
raw_datasets = load_dataset(
|
||||
"json",
|
||||
data_files="/home/ming/malware/inst2vec_bert/data/test_lm/inst.json",
|
||||
field="data",
|
||||
)
|
||||
|
||||
# we use the tokenizer trained on the positive dataset before
|
||||
# tokenizer = tokenizers.Tokenizer.from_file(args.tokenizer_file)
|
||||
tokenizer = tokenizers.Tokenizer.from_file(
|
||||
"/home/ming/malware/inst2vec_bert/bert/tokenizer-inst.json"
|
||||
)
|
||||
tokenizer.enable_padding(
|
||||
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=64
|
||||
)
|
||||
|
||||
# we use a much smaller BERT, config is:
|
||||
config = BertConfig(
|
||||
vocab_size=tokenizer.get_vocab_size(),
|
||||
hidden_size=64,
|
||||
num_hidden_layers=8,
|
||||
num_attention_heads=8,
|
||||
intermediate_size=256,
|
||||
max_position_embeddings=64,
|
||||
)
|
||||
# initalize the new BERT for pre-training
|
||||
model = BertForPreTraining(config)
|
||||
|
||||
# all_special_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
|
||||
# all_special_ids = [tokenizer.token_to_id(token) for token in all_special_tokens]
|
||||
|
||||
# # Load pretrained model and tokenizer
|
||||
# #
|
||||
# # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# # download model & vocab.
|
||||
# if args.config_name:
|
||||
# config = AutoConfig.from_pretrained(args.config_name)
|
||||
# elif args.model_name_or_path:
|
||||
# config = AutoConfig.from_pretrained(args.model_name_or_path)
|
||||
# else:
|
||||
# config = CONFIG_MAPPING[args.model_type]()
|
||||
# logger.warning("You are instantiating a new config instance from scratch.")
|
||||
|
||||
# if args.tokenizer_name:
|
||||
# tokenizer = AutoTokenizer.from_pretrained(
|
||||
# args.tokenizer_name, use_fast=not args.use_slow_tokenizer
|
||||
# )
|
||||
# elif args.model_name_or_path:
|
||||
# tokenizer = AutoTokenizer.from_pretrained(
|
||||
# args.model_name_or_path, use_fast=not args.use_slow_tokenizer
|
||||
# )
|
||||
# else:
|
||||
# raise ValueError(
|
||||
# "You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
||||
# "You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
||||
# )
|
||||
|
||||
# if args.model_name_or_path:
|
||||
# model = AutoModelForMaskedLM.from_pretrained(
|
||||
# args.model_name_or_path,
|
||||
# from_tf=bool(".ckpt" in args.model_name_or_path),
|
||||
# config=config,
|
||||
# )
|
||||
# else:
|
||||
# logger.info("Training new model from scratch")
|
||||
# model = AutoModelForMaskedLM.from_config(config)
|
||||
|
||||
# model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# First we tokenize all the texts.
|
||||
column_names = raw_datasets["train"].column_names
|
||||
text_column_name = "text" if "text" in column_names else column_names[0]
|
||||
|
||||
# if args.max_seq_length is None:
|
||||
# max_seq_length = tokenizer.model_max_length
|
||||
# if max_seq_length > 1024:
|
||||
# logger.warning(
|
||||
# f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
||||
# "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
|
||||
# )
|
||||
# max_seq_length = 1024
|
||||
# else:
|
||||
# if args.max_seq_length > tokenizer.model_max_length:
|
||||
# logger.warning(
|
||||
# f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
|
||||
# f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
||||
# )
|
||||
# max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
|
||||
|
||||
# if args.line_by_line:
|
||||
# # When using line_by_line, we just tokenize each nonempty line.
|
||||
# padding = "max_length" if args.pad_to_max_length else False
|
||||
|
||||
# def tokenize_function(examples):
|
||||
# # Remove empty lines
|
||||
# examples["text"] = [
|
||||
# line
|
||||
# for line in examples["text"]
|
||||
# if len(line) > 0 and not line.isspace()
|
||||
# ]
|
||||
# return tokenizer(
|
||||
# examples["text"],
|
||||
# padding=padding,
|
||||
# truncation=True,
|
||||
# max_length=max_seq_length,
|
||||
# # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
|
||||
# # receives the `special_tokens_mask`.
|
||||
# return_special_tokens_mask=True,
|
||||
# )
|
||||
|
||||
# tokenized_datasets = raw_datasets.map(
|
||||
# tokenize_function,
|
||||
# batched=True,
|
||||
# num_proc=args.preprocessing_num_workers,
|
||||
# remove_columns=[text_column_name],
|
||||
# load_from_cache_file=not args.overwrite_cache,
|
||||
# )
|
||||
# else:
|
||||
# # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
|
||||
# # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
|
||||
# # efficient when it receives the `special_tokens_mask`.
|
||||
# def tokenize_function(examples):
|
||||
# return tokenizer(
|
||||
# examples[text_column_name], return_special_tokens_mask=True
|
||||
# )
|
||||
|
||||
# tokenized_datasets = raw_datasets.map(
|
||||
# tokenize_function,
|
||||
# batched=True,
|
||||
# num_proc=args.preprocessing_num_workers,
|
||||
# remove_columns=column_names,
|
||||
# load_from_cache_file=not args.overwrite_cache,
|
||||
# )
|
||||
|
||||
# # Main data processing function that will concatenate all texts from our dataset and generate chunks of
|
||||
# # max_seq_length.
|
||||
# def group_texts(examples):
|
||||
# # Concatenate all texts.
|
||||
# concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
||||
# total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||
# # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
||||
# # customize this part to your needs.
|
||||
# total_length = (total_length // max_seq_length) * max_seq_length
|
||||
# # Split by chunks of max_len.
|
||||
# result = {
|
||||
# k: [
|
||||
# t[i : i + max_seq_length]
|
||||
# for i in range(0, total_length, max_seq_length)
|
||||
# ]
|
||||
# for k, t in concatenated_examples.items()
|
||||
# }
|
||||
# return result
|
||||
|
||||
# # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
|
||||
# # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
|
||||
# # might be slower to preprocess.
|
||||
# #
|
||||
# # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
||||
# # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
|
||||
|
||||
# tokenized_datasets = tokenized_datasets.map(
|
||||
# group_texts,
|
||||
# batched=True,
|
||||
# num_proc=args.preprocessing_num_workers,
|
||||
# load_from_cache_file=not args.overwrite_cache,
|
||||
# )
|
||||
|
||||
def tokenize_function(examples):
|
||||
text = [tuple(sent) for sent in examples["text"]]
|
||||
encoded_inputs = {}
|
||||
results = tokenizer.encode_batch(text)
|
||||
# input_ids, type_ids, special_token_masks = [], [], []
|
||||
# for i, result in enumerate(results):
|
||||
# input_ids.append(result.ids)
|
||||
# type_ids.append(result.type_ids)
|
||||
# special_token_masks.append(result.special_tokens_mask)
|
||||
encoded_inputs["input_ids"] = [result.ids for result in results]
|
||||
encoded_inputs["token_type_ids"] = [result.type_ids for result in results]
|
||||
# special_tokens_mask = [1 if token in all_special_ids else 0 for token in ids]
|
||||
encoded_inputs["special_tokens_mask"] = [
|
||||
result.special_tokens_mask for result in results
|
||||
]
|
||||
# 0: is ; 1 : is not
|
||||
encoded_inputs["next_sentence_label "] = [
|
||||
1 - label for label in examples["is_next"]
|
||||
]
|
||||
batch_outputs = BatchEncoding(
|
||||
encoded_inputs, tensor_type="np", prepend_batch_axis=False,
|
||||
)
|
||||
return batch_outputs
|
||||
|
||||
tokenized_datasets = raw_datasets.map(
|
||||
tokenize_function,
|
||||
batched=True,
|
||||
num_proc=args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
# load_from_cache_file=not args.overwrite_cache,
|
||||
)
|
||||
|
||||
train_dataset = tokenized_datasets["train"]
|
||||
eval_dataset = tokenized_datasets["validation"]
|
||||
|
||||
# Log a few random samples from the training set:
|
||||
for index in random.sample(range(len(train_dataset)), 3):
|
||||
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
||||
|
||||
# Data collator
|
||||
# This one will take care of randomly masking the tokens.
|
||||
data_collator = DataCollatorForLanguageModeling(
|
||||
tokenizer=tokenizer, mlm_probability=args.mlm_probability
|
||||
)
|
||||
|
||||
# DataLoaders creation:
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
shuffle=True,
|
||||
collate_fn=data_collator,
|
||||
batch_size=args.per_device_train_batch_size,
|
||||
)
|
||||
eval_dataloader = DataLoader(
|
||||
eval_dataset,
|
||||
collate_fn=data_collator,
|
||||
batch_size=args.per_device_eval_batch_size,
|
||||
)
|
||||
|
||||
# Optimizer
|
||||
# Split weights in two groups, one with weight decay and the other not.
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [
|
||||
p
|
||||
for n, p in model.named_parameters()
|
||||
if not any(nd in n for nd in no_decay)
|
||||
],
|
||||
"weight_decay": args.weight_decay,
|
||||
},
|
||||
{
|
||||
"params": [
|
||||
p
|
||||
for n, p in model.named_parameters()
|
||||
if any(nd in n for nd in no_decay)
|
||||
],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
|
||||
|
||||
# Prepare everything with our `accelerator`.
|
||||
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
|
||||
model, optimizer, train_dataloader, eval_dataloader
|
||||
)
|
||||
|
||||
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
|
||||
# shorter in multiprocess)
|
||||
|
||||
# Scheduler and math around the number of training steps.
|
||||
num_update_steps_per_epoch = math.ceil(
|
||||
len(train_dataloader) / args.gradient_accumulation_steps
|
||||
)
|
||||
if args.max_train_steps is None:
|
||||
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||
else:
|
||||
args.num_train_epochs = math.ceil(
|
||||
args.max_train_steps / num_update_steps_per_epoch
|
||||
)
|
||||
|
||||
lr_scheduler = get_scheduler(
|
||||
name=args.lr_scheduler_type,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=args.num_warmup_steps,
|
||||
num_training_steps=args.max_train_steps,
|
||||
)
|
||||
|
||||
# Train!
|
||||
total_batch_size = (
|
||||
args.per_device_train_batch_size
|
||||
* accelerator.num_processes
|
||||
* args.gradient_accumulation_steps
|
||||
)
|
||||
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(f" Num examples = {len(train_dataset)}")
|
||||
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
||||
logger.info(
|
||||
f" Instantaneous batch size per device = {args.per_device_train_batch_size}"
|
||||
)
|
||||
logger.info(
|
||||
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
|
||||
)
|
||||
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
||||
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
||||
# Only show the progress bar once on each machine.
|
||||
progress_bar = tqdm(
|
||||
range(args.max_train_steps), disable=not accelerator.is_local_main_process
|
||||
)
|
||||
completed_steps = 0
|
||||
|
||||
for epoch in range(args.num_train_epochs):
|
||||
model.train()
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
accelerator.backward(loss)
|
||||
if (
|
||||
step % args.gradient_accumulation_steps == 0
|
||||
or step == len(train_dataloader) - 1
|
||||
):
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
progress_bar.update(1)
|
||||
completed_steps += 1
|
||||
|
||||
if completed_steps >= args.max_train_steps:
|
||||
break
|
||||
|
||||
model.eval()
|
||||
losses = []
|
||||
for step, batch in enumerate(eval_dataloader):
|
||||
with torch.no_grad():
|
||||
outputs = model(**batch)
|
||||
|
||||
loss = outputs.loss
|
||||
losses.append(
|
||||
accelerator.gather(loss.repeat(args.per_device_eval_batch_size))
|
||||
)
|
||||
|
||||
losses = torch.cat(losses)
|
||||
losses = losses[: len(eval_dataset)]
|
||||
try:
|
||||
perplexity = math.exp(torch.mean(losses))
|
||||
except OverflowError:
|
||||
perplexity = float("inf")
|
||||
|
||||
logger.info(f"epoch {epoch}: perplexity: {perplexity}")
|
||||
|
||||
if args.output_dir is not None:
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
124
train_my_tokenizer.py
Normal file
124
train_my_tokenizer.py
Normal file
@ -0,0 +1,124 @@
|
||||
import argparse
|
||||
import os
|
||||
from itertools import chain
|
||||
|
||||
from datasets import load_dataset
|
||||
from tokenizers import Tokenizer
|
||||
from tokenizers.models import WordLevel
|
||||
from tokenizers.pre_tokenizers import Whitespace
|
||||
from tokenizers.processors import TemplateProcessing
|
||||
from tokenizers.trainers import WordLevelTrainer
|
||||
|
||||
from process_data.utils import CURRENT_DATA_BASE, ORIGINAL_DATA_BASE, read_file
|
||||
|
||||
BASE_PATH = "/home/ming/malware/inst2vec_bert/bert/"
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Train a word level tokenizer for ASM_BERT"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocab_size",
|
||||
type=int,
|
||||
default=2000,
|
||||
help="The size of vocabulary used to train the tokenizer.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--padding_length",
|
||||
type=int,
|
||||
default=32,
|
||||
help="The length will be padded to by the tokenizer.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def train_tokenizer(args, dataset):
|
||||
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
|
||||
tokenizer.pre_tokenizer = Whitespace()
|
||||
|
||||
trainer = WordLevelTrainer(
|
||||
vocab_size=args.vocab_size,
|
||||
special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"],
|
||||
)
|
||||
|
||||
# def batch_iterator(batch_size=1000):
|
||||
# for i in range(0, len(dataset), batch_size):
|
||||
# yield dataset[i : i + batch_size]["text"]
|
||||
|
||||
# tokenizer.train_from_iterator(
|
||||
# batch_iterator(), trainer=trainer, length=len(dataset)
|
||||
# )
|
||||
|
||||
tokenizer.train_from_iterator(dataset, trainer)
|
||||
|
||||
return tokenizer
|
||||
|
||||
|
||||
def save_tokenizer(tokenizer, tokenizer_file):
|
||||
tokenizer.save(tokenizer_file)
|
||||
|
||||
|
||||
def load_tokenizer(tokenizer_file):
|
||||
if not os.path.exists(tokenizer_file):
|
||||
print("{} doesn't exist, will be retrained...".format(tokenizer_file))
|
||||
return None
|
||||
print("The tokenizer has already been trained.")
|
||||
return Tokenizer.from_file(tokenizer_file)
|
||||
|
||||
|
||||
def post_process(tokenizer):
|
||||
tokenizer.post_processor = TemplateProcessing(
|
||||
single="[CLS] $A [SEP]",
|
||||
pair="[CLS] $A [SEP] $B:1 [SEP]:1",
|
||||
special_tokens=[
|
||||
("[CLS]", tokenizer.token_to_id("[CLS]")),
|
||||
("[SEP]", tokenizer.token_to_id("[SEP]")),
|
||||
],
|
||||
)
|
||||
return tokenizer
|
||||
|
||||
|
||||
def tokenizer_encode(tokenizer, data):
|
||||
return tokenizer.encode_batch(data)
|
||||
|
||||
|
||||
def main(tokenizer_file=""):
|
||||
args = parse_args()
|
||||
|
||||
tokenizer = load_tokenizer(tokenizer_file)
|
||||
|
||||
if tokenizer is not None:
|
||||
return
|
||||
|
||||
# json_files = [
|
||||
# os.path.join(CURRENT_DATA_BASE, "inst.1.{}.json".format(i)) for i in range(128)
|
||||
# ]
|
||||
# dataset = load_dataset("json", data_files=json_files, field="data")
|
||||
|
||||
text_files = [
|
||||
os.path.join(ORIGINAL_DATA_BASE, "inst.1.{}.txt".format(group))
|
||||
for group in ["pos", "neg"]
|
||||
]
|
||||
|
||||
dataset = []
|
||||
for f in text_files:
|
||||
dataset += read_file(f)
|
||||
|
||||
dataset = [tuple(sent[:-1].split("\t")) for sent in dataset]
|
||||
|
||||
print("Trainging tokenizer...")
|
||||
tokenizer = train_tokenizer(args, chain.from_iterable(dataset))
|
||||
tokenizer = post_process(tokenizer)
|
||||
tokenizer.enable_padding(
|
||||
pad_id=tokenizer.token_to_id("[PAD]"),
|
||||
pad_token="[PAD]",
|
||||
length=args.padding_length,
|
||||
)
|
||||
save_tokenizer(tokenizer, tokenizer_file)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(os.path.join(CURRENT_DATA_BASE, "tokenizer-inst.1.json"))
|
Loading…
Reference in New Issue
Block a user