first commit
This commit is contained in:
parent
51a232453a
commit
979573651d
@ -43,7 +43,7 @@ from transformers import (CONFIG_MAPPING, MODEL_MAPPING, AdamW, AutoConfig,
|
|||||||
from my_data_collator import MyDataCollatorForPreTraining
|
from my_data_collator import MyDataCollatorForPreTraining
|
||||||
from process_data.utils import CURRENT_DATA_BASE
|
from process_data.utils import CURRENT_DATA_BASE
|
||||||
|
|
||||||
HIDDEN_SIZE=256
|
HIDDEN_SIZE=16
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
||||||
@ -57,13 +57,13 @@ def parse_args():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--per_device_train_batch_size",
|
"--per_device_train_batch_size",
|
||||||
type=int,
|
type=int,
|
||||||
default=16,
|
default=2048,
|
||||||
help="Batch size (per device) for the training dataloader.",
|
help="Batch size (per device) for the training dataloader.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--per_device_eval_batch_size",
|
"--per_device_eval_batch_size",
|
||||||
type=int,
|
type=int,
|
||||||
default=64,
|
default=16384,
|
||||||
help="Batch size (per device) for the evaluation dataloader.",
|
help="Batch size (per device) for the evaluation dataloader.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -84,7 +84,7 @@ def parse_args():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max_train_steps",
|
"--max_train_steps",
|
||||||
type=int,
|
type=int,
|
||||||
default=None,
|
default=150000,
|
||||||
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -104,19 +104,19 @@ def parse_args():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--num_warmup_steps",
|
"--num_warmup_steps",
|
||||||
type=int,
|
type=int,
|
||||||
default=0,
|
default=4000,
|
||||||
help="Number of steps for the warmup in the lr scheduler.",
|
help="Number of steps for the warmup in the lr scheduler.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--output_dir", type=str, default=None, help="Where to store the final model."
|
"--output_dir", type=str, default='./dataset/out', help="Where to store the final model."
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--seed", type=int, default=None, help="A seed for reproducible training."
|
"--seed", type=int, default=1234, help="A seed for reproducible training."
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--preprocessing_num_workers",
|
"--preprocessing_num_workers",
|
||||||
type=int,
|
type=int,
|
||||||
default=None,
|
default=32,
|
||||||
help="The number of processes to use for the preprocessing.",
|
help="The number of processes to use for the preprocessing.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -189,9 +189,9 @@ def main():
|
|||||||
# field="data",
|
# field="data",
|
||||||
# )
|
# )
|
||||||
train_files = [
|
train_files = [
|
||||||
os.path.join(CURRENT_DATA_BASE, "inst.all.{}.json".format(i)) for i in [0,1,2,3,4,5,6] # ,8,9,10,11,12,13]
|
os.path.join(CURRENT_DATA_BASE, 'json',f"inst.all.{i}.json") for i in range(8)
|
||||||
]
|
]
|
||||||
valid_file = "/home/ming/malware/inst2vec_bert/data/test_lm/inst.json"
|
valid_file = os.path.join(CURRENT_DATA_BASE, 'test', "inst.json")
|
||||||
raw_datasets = load_dataset(
|
raw_datasets = load_dataset(
|
||||||
"json",
|
"json",
|
||||||
data_files={"train": train_files, "validation": valid_file,},
|
data_files={"train": train_files, "validation": valid_file,},
|
||||||
@ -205,7 +205,7 @@ def main():
|
|||||||
|
|
||||||
# NOTE: have to promise the `length` here is consistent with the one used in `train_my_tokenizer.py`
|
# NOTE: have to promise the `length` here is consistent with the one used in `train_my_tokenizer.py`
|
||||||
tokenizer.enable_padding(
|
tokenizer.enable_padding(
|
||||||
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=32
|
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=50
|
||||||
)
|
)
|
||||||
|
|
||||||
# NOTE: `max_position_embeddings` here should be consistent with `length` above
|
# NOTE: `max_position_embeddings` here should be consistent with `length` above
|
||||||
@ -216,7 +216,7 @@ def main():
|
|||||||
num_hidden_layers=4,
|
num_hidden_layers=4,
|
||||||
num_attention_heads=8,
|
num_attention_heads=8,
|
||||||
intermediate_size=4 * HIDDEN_SIZE,
|
intermediate_size=4 * HIDDEN_SIZE,
|
||||||
max_position_embeddings=32,
|
max_position_embeddings=50,
|
||||||
)
|
)
|
||||||
|
|
||||||
# initalize a new BERT for pre-training
|
# initalize a new BERT for pre-training
|
||||||
|
65
my_utils.py
Normal file
65
my_utils.py
Normal file
@ -0,0 +1,65 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
|
||||||
|
"""
|
||||||
|
日志工具
|
||||||
|
|
||||||
|
使用方法:
|
||||||
|
logger = setup_logger(日志记录器的实例名字, 日志文件目录)
|
||||||
|
"""
|
||||||
|
def setup_logger(name, log_file, level=logging.INFO):
|
||||||
|
"""Function setup as many loggers as you want"""
|
||||||
|
if not os.path.exists(os.path.dirname(log_file)):
|
||||||
|
os.makedirs(os.path.dirname(log_file))
|
||||||
|
|
||||||
|
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
|
||||||
|
|
||||||
|
handler = logging.FileHandler(log_file)
|
||||||
|
handler.setFormatter(formatter)
|
||||||
|
|
||||||
|
# 控制台是否输出日志信息
|
||||||
|
# stream_handler = logging.StreamHandler()
|
||||||
|
# stream_handler.setFormatter(formatter)
|
||||||
|
|
||||||
|
logger = logging.getLogger(name)
|
||||||
|
logger.setLevel(level)
|
||||||
|
logger.addHandler(handler)
|
||||||
|
# 控制台
|
||||||
|
# logger.addHandler(stream_handler)
|
||||||
|
|
||||||
|
# 刷新原有log文件
|
||||||
|
|
||||||
|
if os.path.exists(log_file):
|
||||||
|
open(log_file, 'w').close()
|
||||||
|
|
||||||
|
return logger
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
多线程工具
|
||||||
|
"""
|
||||||
|
THREAD_FULL = os.cpu_count()
|
||||||
|
THREAD_HALF = int(os.cpu_count() / 2)
|
||||||
|
def multi_thread(func, args, thread_num=THREAD_FULL):
|
||||||
|
"""
|
||||||
|
多线程执行函数
|
||||||
|
:param func: 函数
|
||||||
|
:param args: list函数参数
|
||||||
|
:param thread_num: 线程数
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
import concurrent.futures
|
||||||
|
from tqdm import tqdm
|
||||||
|
logger = setup_logger('multi_thread', './multi_thread.log')
|
||||||
|
result = []
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=thread_num) as executor:
|
||||||
|
futures_to_args = {
|
||||||
|
executor.submit(func, arg): arg for arg in args
|
||||||
|
}
|
||||||
|
for future in tqdm(concurrent.futures.as_completed(futures_to_args), total=len(args)):
|
||||||
|
try:
|
||||||
|
result.append(future.result())
|
||||||
|
except Exception as exc:
|
||||||
|
logger.error('%r generated an exception: %s' % (futures_to_args[future], exc))
|
||||||
|
return result
|
||||||
|
|
@ -11,6 +11,7 @@ import torch
|
|||||||
import transformers
|
import transformers
|
||||||
from accelerate import Accelerator
|
from accelerate import Accelerator
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
|
from torch import nn
|
||||||
from torch.nn import DataParallel
|
from torch.nn import DataParallel
|
||||||
from torch.utils.data.dataloader import DataLoader
|
from torch.utils.data.dataloader import DataLoader
|
||||||
from tqdm.auto import tqdm
|
from tqdm.auto import tqdm
|
||||||
@ -33,8 +34,8 @@ from transformers import (
|
|||||||
from my_data_collator import MyDataCollatorForPreTraining
|
from my_data_collator import MyDataCollatorForPreTraining
|
||||||
from process_data.utils import CURRENT_DATA_BASE
|
from process_data.utils import CURRENT_DATA_BASE
|
||||||
|
|
||||||
model_file = os.path.join(CURRENT_DATA_BASE, "bert-L2-H8.bin")
|
model_file = os.path.join(CURRENT_DATA_BASE, 'out' ,"pytorch_model.bin")
|
||||||
config_file = os.path.join(CURRENT_DATA_BASE, "bert-L2-H8.config.json")
|
config_file = os.path.join(CURRENT_DATA_BASE, 'out' ,"config.json")
|
||||||
tokenizer_file = os.path.join(CURRENT_DATA_BASE, "tokenizer-inst.all.json")
|
tokenizer_file = os.path.join(CURRENT_DATA_BASE, "tokenizer-inst.all.json")
|
||||||
|
|
||||||
|
|
||||||
@ -48,7 +49,7 @@ def load_model():
|
|||||||
|
|
||||||
tokenizer = tokenizers.Tokenizer.from_file(tokenizer_file)
|
tokenizer = tokenizers.Tokenizer.from_file(tokenizer_file)
|
||||||
tokenizer.enable_padding(
|
tokenizer.enable_padding(
|
||||||
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=32
|
pad_id=tokenizer.token_to_id("[PAD]"), pad_token="[PAD]", length=50
|
||||||
)
|
)
|
||||||
print("Load tokenizer successfully !")
|
print("Load tokenizer successfully !")
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
@ -120,8 +121,10 @@ def generate_inst_vec(inst, method="mean"):
|
|||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
inst = ["mov ebp esp" for _ in range(8)]
|
inst = ['adc byte [ ebp - 0x74 ] cl','mov dh 0x79','adc eax 1']
|
||||||
print(generate_inst_vec(inst).shape)
|
tmp = generate_inst_vec(inst, method="mean")
|
||||||
|
print(tmp.shape)
|
||||||
|
print(tmp.detach().numpy())
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -15,10 +15,10 @@ def check(filename):
|
|||||||
def main():
|
def main():
|
||||||
longest = 0
|
longest = 0
|
||||||
# for i in range(6):
|
# for i in range(6):
|
||||||
for i in range(10):
|
for i in range(32):
|
||||||
for group in ("pos", "neg"):
|
for group in ("pos", "neg"):
|
||||||
filename = os.path.join(
|
filename = os.path.join(
|
||||||
ORIGINAL_DATA_BASE, "inst.{}.{}.txt.clean".format(i, group)
|
ORIGINAL_DATA_BASE, f'{group}_clean',f"inst.{i}.{group}.txt.clean"
|
||||||
)
|
)
|
||||||
longest = max(check(filename), longest)
|
longest = max(check(filename), longest)
|
||||||
print("The longest sentence in all files has {} words.".format(longest))
|
print("The longest sentence in all files has {} words.".format(longest))
|
||||||
|
@ -1,21 +1,57 @@
|
|||||||
from utils import ORIGINAL_DATA_BASE, read_file, write_file
|
from utils import ORIGINAL_DATA_BASE, read_file, write_file
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
import os
|
import os
|
||||||
|
from my_utils import multi_thread, setup_logger
|
||||||
|
import concurrent.futures
|
||||||
|
|
||||||
def remove(pos_file, neg_file):
|
|
||||||
pos = read_file(pos_file)
|
|
||||||
neg = read_file(neg_file)
|
|
||||||
rets = []
|
def remove(neg_list, pos_file):
|
||||||
for n in tqdm(neg):
|
ret = []
|
||||||
if n in pos:
|
for neg in neg_list:
|
||||||
|
if neg in pos_file:
|
||||||
continue
|
continue
|
||||||
rets.append(n)
|
ret.append(neg)
|
||||||
write_file(rets, neg_file)
|
return ret
|
||||||
|
|
||||||
|
def split_list_evenly(lst, n):
|
||||||
|
# 计算每块的大小(整除,最后一块可能略短)
|
||||||
|
chunk_size = len(lst) // n
|
||||||
|
# 最后一块可能需要额外的元素
|
||||||
|
last_chunk_size = len(lst) % n
|
||||||
|
# 初始化空列表存放切片后的块
|
||||||
|
chunks = []
|
||||||
|
|
||||||
|
# 对于前n-1块
|
||||||
|
for i in range(0, (n - (last_chunk_size > 0)), chunk_size):
|
||||||
|
chunks.append(lst[i:i + chunk_size])
|
||||||
|
|
||||||
|
# 添加最后一个可能稍短的块
|
||||||
|
if last_chunk_size > 0:
|
||||||
|
chunks.append(lst[(n - (last_chunk_size > 0)) * chunk_size:])
|
||||||
|
|
||||||
|
return chunks
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
pos_file = os.path.join(ORIGINAL_DATA_BASE, "inst.all.pos.txt.clean")
|
file = os.path.join('../dataset/all/all_clean')
|
||||||
neg_file = os.path.join(ORIGINAL_DATA_BASE, "inst.all.neg.txt.clean")
|
pos_file = read_file(os.path.join(file, "inst.all.pos.txt.clean"))
|
||||||
remove(pos_file, neg_file)
|
neg_file = split_list_evenly(read_file(os.path.join(file, "inst.all.neg.txt.clean")), int(os.cpu_count()*1000))
|
||||||
|
print(len(neg_file))
|
||||||
|
logger = setup_logger('remove', '../out/remove.log')
|
||||||
|
result = []
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
||||||
|
print('start build task.')
|
||||||
|
futures_to_args = {
|
||||||
|
executor.submit(remove, neg_list, pos_file): neg_list for neg_list in neg_file
|
||||||
|
}
|
||||||
|
print('start run task.')
|
||||||
|
for future in tqdm(concurrent.futures.as_completed(futures_to_args), total=len(futures_to_args)):
|
||||||
|
try:
|
||||||
|
result.extend(future.result())
|
||||||
|
except Exception as exc:
|
||||||
|
logger.error(exc)
|
||||||
|
write_file(result, os.path.join(file, "inst.all.neg.txt.clean"))
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
@ -19,11 +19,11 @@ def convert(fin, fout):
|
|||||||
|
|
||||||
def main():
|
def main():
|
||||||
# for i in range(6):
|
# for i in range(6):
|
||||||
for i in range(10):
|
# for i in range(10):
|
||||||
fin = os.path.join(ORIGINAL_DATA_BASE, "win32_0{}xxxx.all".format(i))
|
# fin = os.path.join(ORIGINAL_DATA_BASE, "win32_0{}xxxx.all".format(i))
|
||||||
fout = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.pos.txt".format(i))
|
# fout = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.pos.txt".format(i))
|
||||||
convert(fin, fout)
|
# convert(fin, fout)
|
||||||
|
convert(os.path.join('../dataset/all/win.all'), os.path.join('../dataset/all/inst.pos.txt'))
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
@ -5,32 +5,35 @@ from tqdm import tqdm
|
|||||||
|
|
||||||
from utils import ORIGINAL_DATA_BASE, read_file
|
from utils import ORIGINAL_DATA_BASE, read_file
|
||||||
|
|
||||||
|
from my_utils import multi_thread
|
||||||
|
|
||||||
|
|
||||||
def create(pos, neg, tgt):
|
def create(pos, neg, tgt):
|
||||||
pos_sents = read_file(pos)
|
pos_sents = read_file(pos)
|
||||||
|
|
||||||
neg_sents = read_file(neg)
|
neg_sents = read_file(neg)
|
||||||
neg_length = len(neg_sents)
|
neg_length = len(neg_sents)
|
||||||
print("Start writing negative examples to {}...".format(tgt))
|
|
||||||
with open(tgt, "w", encoding="utf-8") as fout:
|
with open(tgt, "w", encoding="utf-8") as fout:
|
||||||
for sent in tqdm(pos_sents):
|
for sent in tqdm(pos_sents):
|
||||||
first = sent.split("\t")[0]
|
first = sent.split("\t")[0]
|
||||||
index = randint(0, neg_length - 1)
|
index = randint(0, neg_length - 1)
|
||||||
pair = neg_sents[index].split("\t")[randint(0, 1)].replace("\n", "")
|
pair = neg_sents[index].split("\t")
|
||||||
|
pair = pair[randint(0, 1)]
|
||||||
|
pair = pair.replace("\n", "")
|
||||||
fout.write(first + "\t" + pair + "\n")
|
fout.write(first + "\t" + pair + "\n")
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# for i in range(6):
|
# for i in range(6):
|
||||||
for i in range(10):
|
|
||||||
j = (i + 1) % 10
|
|
||||||
# neg = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(j))
|
# neg = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(j))
|
||||||
# pos = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(i))
|
# pos = os.path.join(ORIGINAL_DATA_BASE, "linux32_0{}xxxx.all".format(i))
|
||||||
pos = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.pos.txt.clean".format(i))
|
file = os.path.join("../dataset/all/pos_clean")
|
||||||
neg = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.pos.txt.clean".format(j))
|
out_file = os.path.join("../dataset/all/neg_txt")
|
||||||
tgt = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.neg.txt".format(i))
|
os.makedirs(out_file, exist_ok=True)
|
||||||
|
for i in tqdm(range(os.cpu_count()), total=os.cpu_count() ):
|
||||||
|
j = (i + 1) % os.cpu_count()
|
||||||
|
pos = os.path.join(file, f"inst.{i}.pos.txt.clean")
|
||||||
|
neg = os.path.join(file, f"inst.{j}.pos.txt.clean")
|
||||||
|
tgt = os.path.join(out_file, f"inst.{i}.neg.txt")
|
||||||
create(pos, neg, tgt)
|
create(pos, neg, tgt)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
90
process_data/exe2all.py
Normal file
90
process_data/exe2all.py
Normal file
@ -0,0 +1,90 @@
|
|||||||
|
import os
|
||||||
|
import r2pipe
|
||||||
|
from my_utils import setup_logger
|
||||||
|
import concurrent.futures
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
|
||||||
|
def extract_opcode(disasm_text):
|
||||||
|
"""
|
||||||
|
从反汇编文本中提取操作码和操作数
|
||||||
|
正则表达式用于匹配操作码和操作数,考虑到操作数可能包含空格和逗号
|
||||||
|
"""
|
||||||
|
op_list = disasm_text.split(' ')
|
||||||
|
res = []
|
||||||
|
for item in op_list:
|
||||||
|
item = item.strip().replace(',', '')
|
||||||
|
if '[' in item:
|
||||||
|
res.append('[')
|
||||||
|
res.append(item.replace('[', '').replace(']', ''))
|
||||||
|
if ']' in item:
|
||||||
|
res.append(']')
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def double_exe_op_list(op_list):
|
||||||
|
double_exe_op_list = []
|
||||||
|
for i in range(len(op_list) - 1 ):
|
||||||
|
double_exe_op_list.append((op_list[i], op_list[i + 1]))
|
||||||
|
return double_exe_op_list
|
||||||
|
|
||||||
|
def get_all_from_exe(file, out_file):
|
||||||
|
# 获取基础块内的操作码序列
|
||||||
|
r2pipe_open = r2pipe.open(os.path.join(file), flags=['-2'])
|
||||||
|
with open(out_file, 'a') as f:
|
||||||
|
try:
|
||||||
|
# 获取函数列表
|
||||||
|
r2pipe_open.cmd("aaa")
|
||||||
|
r2pipe_open.cmd('e arch=x86')
|
||||||
|
function_list = r2pipe_open.cmdj("aflj")
|
||||||
|
exe_op_list = []
|
||||||
|
for function in function_list:
|
||||||
|
if function['name'][:4] not in ['fcn.', 'loc.', 'main', 'entr']:
|
||||||
|
continue
|
||||||
|
block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
|
||||||
|
for block in block_list:
|
||||||
|
# 获取基本块的反汇编指令
|
||||||
|
disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
|
||||||
|
if disasm:
|
||||||
|
for op in disasm:
|
||||||
|
if op["type"] == "invalid" or op["opcode"] == "invalid":
|
||||||
|
continue
|
||||||
|
op_list = extract_opcode(op["disasm"])
|
||||||
|
exe_op_list.append(' '.join(op_list))
|
||||||
|
exe_op_list = double_exe_op_list(exe_op_list)
|
||||||
|
for op_str_before, op_str_after in exe_op_list:
|
||||||
|
f.write(op_str_before + '\t' + op_str_after + '\n')
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error: get function list failed in {file} ,error {e}")
|
||||||
|
return False, file, e
|
||||||
|
r2pipe_open.quit()
|
||||||
|
return True, '', ''
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
sample_file_path = '/mnt/d/bishe/dataset/sample_malware/'
|
||||||
|
sample_file_list = os.listdir(sample_file_path)[:1000]
|
||||||
|
out_file_path = '../dataset/all'
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
||||||
|
print(f"start with {os.cpu_count()} works.")
|
||||||
|
future_to_args = {
|
||||||
|
executor.submit(get_all_from_exe,
|
||||||
|
os.path.join(sample_file_path, sample_file_list[file_index]),
|
||||||
|
os.path.join(out_file_path, str(f'inst.{file_index%os.cpu_count()}.pos.txt'))
|
||||||
|
):
|
||||||
|
file_index for file_index in range(len(sample_file_list))
|
||||||
|
}
|
||||||
|
for future in tqdm(concurrent.futures.as_completed(future_to_args), total=len(sample_file_list)):
|
||||||
|
try:
|
||||||
|
future.result()
|
||||||
|
if not future.result()[0]:
|
||||||
|
print(f"Error file: {future.result()[1]}, msg {future.result()[2]}")
|
||||||
|
except Exception as exc:
|
||||||
|
logger.error(f"Error: {exc}")
|
||||||
|
print(f"Error: {exc}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
logger = setup_logger('exe2all', '../log/exe2all.log')
|
||||||
|
main()
|
||||||
|
|
@ -7,8 +7,8 @@ from tqdm import tqdm
|
|||||||
|
|
||||||
from utils import CURRENT_DATA_BASE, ORIGINAL_DATA_BASE, read_file
|
from utils import CURRENT_DATA_BASE, ORIGINAL_DATA_BASE, read_file
|
||||||
|
|
||||||
BASE = 4600000
|
# BASE = 4600000
|
||||||
|
BASE = 46000
|
||||||
|
|
||||||
def write_worker(sents, json_file, index):
|
def write_worker(sents, json_file, index):
|
||||||
examples = []
|
examples = []
|
||||||
@ -24,13 +24,21 @@ def write_worker(sents, json_file, index):
|
|||||||
|
|
||||||
|
|
||||||
def merge_to_json(pos, neg, json_file):
|
def merge_to_json(pos, neg, json_file):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
sents = read_file(pos)
|
sents = read_file(pos)
|
||||||
|
|
||||||
p = Pool(6)
|
p = Pool(6)
|
||||||
|
|
||||||
for i in range(6):
|
for i in range(6):
|
||||||
p.apply_async(
|
p.apply_async(
|
||||||
write_worker, args=(sents[i * BASE : (i + 1) * BASE], json_file, 2+i,)
|
write_worker, args=(sents[i * BASE : (i + 1) * BASE], json_file, i,)
|
||||||
)
|
)
|
||||||
print("Waiting for all sub-processes done...")
|
print("Waiting for all sub-processes done...")
|
||||||
p.close()
|
p.close()
|
||||||
@ -59,7 +67,7 @@ def merge_to_json(pos, neg, json_file):
|
|||||||
|
|
||||||
for i in range(6):
|
for i in range(6):
|
||||||
p.apply_async(
|
p.apply_async(
|
||||||
write_worker, args=(sents[i * BASE : (i + 1) * BASE], json_file, 8 + i,)
|
write_worker, args=(sents[i * BASE : (i + 1) * BASE], json_file, 6 + i,)
|
||||||
)
|
)
|
||||||
print("Waiting for all sub-processes done...")
|
print("Waiting for all sub-processes done...")
|
||||||
p.close()
|
p.close()
|
||||||
@ -85,9 +93,9 @@ def main():
|
|||||||
# neg = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.neg.label.txt".format(i))
|
# neg = os.path.join(ORIGINAL_DATA_BASE, "inst.{}.neg.label.txt".format(i))
|
||||||
# json_file = os.path.join(CURRENT_DATA_BASE, "inst.{}.".format(i))
|
# json_file = os.path.join(CURRENT_DATA_BASE, "inst.{}.".format(i))
|
||||||
# merge_to_json(pos, neg, json_file)
|
# merge_to_json(pos, neg, json_file)
|
||||||
pos = os.path.join(ORIGINAL_DATA_BASE, "inst.all.pos.txt.clean.label")
|
pos = os.path.join(ORIGINAL_DATA_BASE,'all_clean', "inst.all.pos.txt.clean.label")
|
||||||
neg = os.path.join(ORIGINAL_DATA_BASE, "inst.all.neg.txt.clean.label")
|
neg = os.path.join(ORIGINAL_DATA_BASE, 'all_clean',"inst.all.neg.txt.clean.label")
|
||||||
json_file = os.path.join(CURRENT_DATA_BASE, "inst.all.")
|
json_file = os.path.join(CURRENT_DATA_BASE, 'json',"inst.all.")
|
||||||
merge_to_json(pos, neg, json_file)
|
merge_to_json(pos, neg, json_file)
|
||||||
|
|
||||||
|
|
||||||
|
49
process_data/r2test/max_op_count.py
Normal file
49
process_data/r2test/max_op_count.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
import r2pipe
|
||||||
|
from my_utils import setup_logger, multi_thread, THREAD_FULL
|
||||||
|
import os
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
def get_all_from_exe(file):
|
||||||
|
# 获取基础块内的操作码序列
|
||||||
|
r2pipe_open = r2pipe.open(os.path.join(file), flags=['-2'])
|
||||||
|
try:
|
||||||
|
# 获取函数列表
|
||||||
|
r2pipe_open.cmd("aaa")
|
||||||
|
r2pipe_open.cmd('e arch=x86')
|
||||||
|
function_list = r2pipe_open.cmdj("aflj")
|
||||||
|
exe_op_count = []
|
||||||
|
for function in function_list:
|
||||||
|
function_op_count_list = []
|
||||||
|
if function['name'][:4] not in ['fcn.', 'loc.', 'main', 'entr']:
|
||||||
|
continue
|
||||||
|
block_list = r2pipe_open.cmdj("afbj @" + str(function['offset']))
|
||||||
|
|
||||||
|
for block in block_list:
|
||||||
|
# 获取基本块的反汇编指令
|
||||||
|
disasm = r2pipe_open.cmdj("pdj " + str(block["ninstr"]) + " @" + str(block["addr"]))
|
||||||
|
block_op_count = 0
|
||||||
|
if disasm:
|
||||||
|
print_flag = 1 if len(disasm) >= 723 else 0
|
||||||
|
for op in disasm:
|
||||||
|
if op["type"] == "invalid" or op["opcode"] == "invalid":
|
||||||
|
continue
|
||||||
|
if print_flag == 1:
|
||||||
|
print(op['disasm'])
|
||||||
|
block_op_count += 1
|
||||||
|
function_op_count_list.append(block_op_count)
|
||||||
|
exe_op_count.append(function_op_count_list)
|
||||||
|
|
||||||
|
logger.info(f"{file} {exe_op_count}")
|
||||||
|
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error: get function list failed in {file} ,error {e}")
|
||||||
|
return False, file, e
|
||||||
|
r2pipe_open.quit()
|
||||||
|
return True, '', ''
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
logger = setup_logger('get_all_from_exe', '../../log/get_all_from_exe.log')
|
||||||
|
file = '/mnt/d/bishe/dataset/sample_benign'
|
||||||
|
file_list = os.listdir(file)
|
||||||
|
multi_thread(get_all_from_exe, ['/mnt/d/bishe/dataset/sample_benign/00125dcd81261701fcaaf84d0cb45d0e.exe'], thread_num=THREAD_FULL)
|
18
process_data/shell_com/remove_repete_line.py
Normal file
18
process_data/shell_com/remove_repete_line.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
# Python运行shell脚本
|
||||||
|
import subprocess
|
||||||
|
import os
|
||||||
|
from my_utils import multi_thread
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def run_shell(file_num):
|
||||||
|
com_line = f'cat ./neg_txt/inst.{file_num}.neg.txt | sort -n | uniq > ./neg_clean/inst.{file_num}.neg.txt.clean'
|
||||||
|
p = subprocess.Popen(com_line, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||||
|
stdout, stderr = p.communicate()
|
||||||
|
return stdout, stderr
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
os.chdir('../../dataset/all')
|
||||||
|
result = multi_thread(run_shell, range(os.cpu_count()))
|
||||||
|
|
||||||
|
|
@ -1,18 +1,16 @@
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
# ORIGINAL_DATA_BASE = "/home/ming/malware/data/elfasm_inst_pairs"
|
# ORIGINAL_DATA_BASE = "/home/ming/malware/data/elfasm_inst_pairs"
|
||||||
ORIGINAL_DATA_BASE = "/home/ming/malware/data/malasm_inst_pairs"
|
ORIGINAL_DATA_BASE = "/mnt/d/bishe/Inst2Vec/dataset/all"
|
||||||
CURRENT_DATA_BASE = "/home/ming/malware/inst2vec_bert/data/asm_bert"
|
CURRENT_DATA_BASE = "/mnt/d/bishe/Inst2Vec/dataset/all"
|
||||||
|
|
||||||
|
|
||||||
def read_file(filename):
|
def read_file(filename):
|
||||||
print("Reading data from {}...".format(filename))
|
|
||||||
with open(filename, "r", encoding="utf-8") as fin:
|
with open(filename, "r", encoding="utf-8") as fin:
|
||||||
return fin.readlines()
|
return fin.readlines()
|
||||||
|
|
||||||
|
|
||||||
def write_file(sents, filename):
|
def write_file(sents, filename):
|
||||||
print("Writing data to {}...".format(filename))
|
|
||||||
with open(filename, "w", encoding="utf-8") as fout:
|
with open(filename, "w", encoding="utf-8") as fout:
|
||||||
for sent in sents:
|
for sent in sents:
|
||||||
fout.write(sent)
|
fout.write(sent)
|
||||||
|
@ -2,7 +2,6 @@ import argparse
|
|||||||
import os
|
import os
|
||||||
from itertools import chain
|
from itertools import chain
|
||||||
|
|
||||||
from datasets import load_dataset
|
|
||||||
from tokenizers import Tokenizer
|
from tokenizers import Tokenizer
|
||||||
from tokenizers.models import WordLevel
|
from tokenizers.models import WordLevel
|
||||||
from tokenizers.pre_tokenizers import Whitespace
|
from tokenizers.pre_tokenizers import Whitespace
|
||||||
@ -11,7 +10,7 @@ from tokenizers.trainers import WordLevelTrainer
|
|||||||
|
|
||||||
from process_data.utils import CURRENT_DATA_BASE, ORIGINAL_DATA_BASE, read_file
|
from process_data.utils import CURRENT_DATA_BASE, ORIGINAL_DATA_BASE, read_file
|
||||||
|
|
||||||
BASE_PATH = "/home/ming/malware/inst2vec_bert/bert/"
|
|
||||||
|
|
||||||
|
|
||||||
def parse_args():
|
def parse_args():
|
||||||
@ -27,7 +26,7 @@ def parse_args():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--padding_length",
|
"--padding_length",
|
||||||
type=int,
|
type=int,
|
||||||
default=32,
|
default=50,
|
||||||
help="The length will be padded to by the tokenizer.",
|
help="The length will be padded to by the tokenizer.",
|
||||||
)
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
@ -99,8 +98,8 @@ def main(tokenizer_file=""):
|
|||||||
# dataset = load_dataset("json", data_files=json_files, field="data")
|
# dataset = load_dataset("json", data_files=json_files, field="data")
|
||||||
|
|
||||||
text_files = [
|
text_files = [
|
||||||
os.path.join(ORIGINAL_DATA_BASE, "inst.{}.{}.txt.clean".format(i, group))
|
os.path.join(ORIGINAL_DATA_BASE, f'{group}_clean',f"inst.{i}.{group}.txt.clean")
|
||||||
for group in ["pos", "neg"] for i in range(10)
|
for group in ["pos", "neg"] for i in range(32)
|
||||||
]
|
]
|
||||||
|
|
||||||
dataset = []
|
dataset = []
|
||||||
|
Loading…
Reference in New Issue
Block a user