Complete Raw-feature-extractor
Complete the reproduction of the Raw-feature-extractor: The purpose of read_idaFILE.py is to read the raw-feature from the generated .ida file and display
This commit is contained in:
parent
e29e36aa32
commit
17c1ac88b1
221728
Genius3/acfgs/hpcenter.ida
221728
Genius3/acfgs/hpcenter.ida
File diff suppressed because it is too large
Load Diff
Binary file not shown.
@ -126,7 +126,7 @@ def get_func_cfgs_c(ea):
|
|||||||
i += 1
|
i += 1
|
||||||
icfg = cfg.getCfg(func, externs_eas, ea_externs)
|
icfg = cfg.getCfg(func, externs_eas, ea_externs)
|
||||||
func_f = get_discoverRe_feature(func, icfg[0])
|
func_f = get_discoverRe_feature(func, icfg[0])
|
||||||
raw_g = raw_graph(funcname, icfg, func_f) #生成一个rawcfg。raw_graph是一个python class,定义在 raw_graph.py
|
raw_g = raw_graph(funcname, icfg, func_f) #生成一个rawcfg。raw_graph是一个python class,定义在 raw_graph.py.包含g(本文的ACFG)、olg_g(discovRe的acfg)、feature(函数级别的一些特征,以及betweenness)
|
||||||
raw_cfgs.append(raw_g) # raw_graphs 是另一个python class,存储raw_graph的list。定义在 raw_graph.py
|
raw_cfgs.append(raw_g) # raw_graphs 是另一个python class,存储raw_graph的list。定义在 raw_graph.py
|
||||||
#print(raw_g.__dict__)
|
#print(raw_g.__dict__)
|
||||||
#print(raw_g) 由于raw_graph、raw_graphs都是class,直接print只会打印<raw_graphs.raw_graphs instance at 0x09888FD0>,不能打印对象的属性。 #https://blog.51cto.com/steed/2046408 print_obj、 print(obj.__dict__)
|
#print(raw_g) 由于raw_graph、raw_graphs都是class,直接print只会打印<raw_graphs.raw_graphs instance at 0x09888FD0>,不能打印对象的属性。 #https://blog.51cto.com/steed/2046408 print_obj、 print(obj.__dict__)
|
||||||
|
Binary file not shown.
@ -1,9 +1,11 @@
|
|||||||
|
# -*- coding: UTF-8 -*-
|
||||||
import networkx as nx
|
import networkx as nx
|
||||||
import pdb
|
import pdb
|
||||||
def betweeness(g):
|
def betweeness(g):
|
||||||
#pdb.set_trace()
|
#pdb.set_trace()
|
||||||
betweenness = nx.betweenness_centrality(g)
|
betweenness = nx.betweenness_centrality(g)
|
||||||
return betweenness
|
#print betweenness
|
||||||
|
return betweenness #list
|
||||||
|
|
||||||
def eigenvector(g):
|
def eigenvector(g):
|
||||||
centrality = nx.eigenvector_centrality(g)
|
centrality = nx.eigenvector_centrality(g)
|
||||||
@ -13,7 +15,7 @@ def closeness_centrality(g):
|
|||||||
closeness = nx.closeness_centrality(g)
|
closeness = nx.closeness_centrality(g)
|
||||||
return closeness
|
return closeness
|
||||||
|
|
||||||
def retrieveGP(g):
|
def retrieveGP(g): #list,转化为float。将基本块级别的betweeness转化为函数级别的betweeness
|
||||||
bf = betweeness(g)
|
bf = betweeness(g)
|
||||||
#close = closeness_centrality(g)
|
#close = closeness_centrality(g)
|
||||||
#bf_sim =
|
#bf_sim =
|
||||||
|
Binary file not shown.
@ -19,10 +19,16 @@ def parse_command():
|
|||||||
return args
|
return args
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
#E:\BaiduNetdiskDownload\IDA_Pro_v6.8\IDA_Pro_v6.8\idaq.exe -c -S"raw-feature-extractor/preprocessing_ida.py --path C:\Program1\pycharmproject\Genius3\acfgs" hpcenter
|
||||||
#print str(sys.argv) #['raw-feature-extractor/preprocessing_ida.py']
|
#print str(sys.argv) #['raw-feature-extractor/preprocessing_ida.py']
|
||||||
#print str(idc.ARGV) #['raw-feature-extractor/preprocessing_ida.py', '--path', 'C:\\Program1\\pycharmproject\\Genius3\\new']
|
#print str(idc.ARGV) #['raw-feature-extractor/preprocessing_ida.py', '--path', 'C:\\Program1\\pycharmproject\\Genius3\\acfgs']
|
||||||
#print idc.ARGV[2]
|
#print idc.ARGV[2]
|
||||||
#print type(idc.ARGV[2])
|
#print type(idc.ARGV[2])
|
||||||
|
|
||||||
|
# E:\BaiduNetdiskDownload\IDA_Pro_v6.8\IDA_Pro_v6.8\idaq.exe -c -A -S"raw-feature-extractor/preprocessing_ida.py --path C:\Program1\pycharmproject\Genius4\acfgs" hpcenter
|
||||||
|
#测试生成原始特征的时间。
|
||||||
|
start_t = time.clock()
|
||||||
|
|
||||||
args = parse_command()
|
args = parse_command()
|
||||||
#path = args.path
|
#path = args.path
|
||||||
path = idc.ARGV[2]
|
path = idc.ARGV[2]
|
||||||
@ -32,6 +38,11 @@ if __name__ == '__main__':
|
|||||||
idc.SetShortPrm(idc.INF_START_AF, analysis_flags)
|
idc.SetShortPrm(idc.INF_START_AF, analysis_flags)
|
||||||
idaapi.autoWait()
|
idaapi.autoWait()
|
||||||
cfgs = get_func_cfgs_c(FirstSeg())
|
cfgs = get_func_cfgs_c(FirstSeg())
|
||||||
|
|
||||||
|
end_t = time.clock()
|
||||||
|
print (end_t - start_t) #1.5934438s hpcenter 83.4 KB #35.6745299s SCGDW698 5.5mb #14.1480888s 762kb SCMQTTIot 这个时间包括ida分析二进制文件的时间和脚本生成对应原始特征的时间
|
||||||
|
# 应该是随着函数和基本块的数量增加而线性增加的,先不写了。可能ida分析二进制文件的占比比较高
|
||||||
|
|
||||||
binary_name = idc.GetInputFile() + '.ida'
|
binary_name = idc.GetInputFile() + '.ida'
|
||||||
print path
|
print path
|
||||||
print binary_name
|
print binary_name
|
||||||
@ -39,13 +50,7 @@ if __name__ == '__main__':
|
|||||||
pickle.dump(cfgs, open(fullpath,'w'))
|
pickle.dump(cfgs, open(fullpath,'w'))
|
||||||
#print binary_name
|
#print binary_name
|
||||||
|
|
||||||
testpath="C:\Program1\pycharmproject\Genius3/acfgs/hpcenter.ida"
|
|
||||||
fr = open(fullpath,'r')
|
|
||||||
data1 = pickle.load(fr)
|
#加上这句,脚本执行完就退出IDA
|
||||||
print(type(data1)) #<type 'instance'>
|
|
||||||
print(data1.raw_graph_list[393].__dict__)
|
|
||||||
print(data1.raw_graph_list[393].g)
|
|
||||||
print(data1.raw_graph_list[393].g.nodes())
|
|
||||||
#print_obj(data1)
|
|
||||||
#print cfgs.raw_graph_list[0]
|
|
||||||
#idc.Exit(0)
|
#idc.Exit(0)
|
BIN
Genius3/raw-feature-extractor/preprocessing_ida.pyc
Normal file
BIN
Genius3/raw-feature-extractor/preprocessing_ida.pyc
Normal file
Binary file not shown.
@ -1,7 +1,10 @@
|
|||||||
# -*- coding: UTF-8 -*-
|
# -*- coding: UTF-8 -*-
|
||||||
import itertools
|
import itertools
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
sys.path.insert(0, '/usr/local/lib/python2.7/dist-packages/')
|
sys.path.insert(0, '/usr/local/lib/python2.7/dist-packages/')
|
||||||
|
sys.path.insert(1, 'C:/Python27/Lib/site-packages')
|
||||||
|
|
||||||
import networkx as nx
|
import networkx as nx
|
||||||
#import numpy as np
|
#import numpy as np
|
||||||
from subprocess import Popen, PIPE
|
from subprocess import Popen, PIPE
|
||||||
@ -72,10 +75,10 @@ class raw_graph:
|
|||||||
insts = g.node[id_]['numIns']
|
insts = g.node[id_]['numIns']
|
||||||
feature_vec.append(insts)
|
feature_vec.append(insts)
|
||||||
# of LIs6
|
# of LIs6
|
||||||
insts = g.node[id_]['numLIs']
|
insts = g.node[id_]['numLIs'] #
|
||||||
feature_vec.append(insts)
|
feature_vec.append(insts)
|
||||||
# of TIs7
|
# of TIs7
|
||||||
insts = g.node[id_]['numTIs']
|
insts = g.node[id_]['numTIs'] #transfer instructions
|
||||||
feature_vec.append(insts)
|
feature_vec.append(insts)
|
||||||
return feature_vec
|
return feature_vec
|
||||||
|
|
||||||
|
Binary file not shown.
100
Genius3/raw-feature-extractor/read_idaFILE.py
Normal file
100
Genius3/raw-feature-extractor/read_idaFILE.py
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
import sys
|
||||||
|
import sys
|
||||||
|
from matplotlib import pyplot as plt
|
||||||
|
sys.path.insert(0, '/usr/local/lib/python2.7/dist-packages/')
|
||||||
|
sys.path.insert(1, 'C:/Python27/Lib/site-packages')
|
||||||
|
import networkx as nx
|
||||||
|
def print_obj(obj):
|
||||||
|
"打印对象的所有属性"
|
||||||
|
print(obj.__dict__)
|
||||||
|
|
||||||
|
import pickle
|
||||||
|
|
||||||
|
#sub_10F20 308 反编译代码有字符串,但是这个特征提取里没有字符串 constant,可能是间接引用的,不识别。看了下所有函数的特征,几乎都没有字符串常量,可能都是写在别的地方然后引用的。
|
||||||
|
#sub_166C4 393
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
|
||||||
|
testpath = "C:\Program1\pycharmproject\Genius3/acfgs/hpcenter.ida"
|
||||||
|
fr = open(testpath, 'r')
|
||||||
|
data1 = pickle.load(fr) #一个二进制文件的acfgs
|
||||||
|
#print(type(data1))
|
||||||
|
#print_obj(data1)
|
||||||
|
#print data1.raw_graph_list[393]
|
||||||
|
#print_obj(data1.raw_graph_list[393])
|
||||||
|
#nx.draw(data1.raw_graph_list[393].g,with_labels=True)
|
||||||
|
#plt.show()
|
||||||
|
|
||||||
|
print "一个二进制文件的所有函数的原始特征,list。"
|
||||||
|
print_obj(data1) #acfg list
|
||||||
|
print "\n"
|
||||||
|
|
||||||
|
print "一个函数的原始特征,由old_g(discovRe方法的ACFG),g(Genius方法的ACFG),fun_feature(表示函数级别的特征的向量)三部分构成"
|
||||||
|
print_obj(data1.raw_graph_list[393]) #一个函数的acfg
|
||||||
|
print "\n"
|
||||||
|
feature=data1.raw_graph_list[393].fun_features
|
||||||
|
print "函数级别特征: # 1 function calls # 2 logic instructions # 3 TransferIns # 4 LocalVariables # 5 BB basicblocks# 6 Edges # 7 IncommingCalls# 8 Intrs# 9 between # 10 strings # 11 consts"
|
||||||
|
print feature
|
||||||
|
print "\n"
|
||||||
|
|
||||||
|
|
||||||
|
# G=data1.raw_graph_list[393].old_g
|
||||||
|
# print G.node[0] # G.node[i]是dict
|
||||||
|
# for key, value in G.node[0].items():
|
||||||
|
# print('{key}:{value}'.format(key=key, value=value))
|
||||||
|
|
||||||
|
# 一个基本块的特征 #1'consts' 数字常量 #2'strings'字符串常量 #3'offs' offspring 字节点数量? #4'numAs' 算数指令如INC #5'numCalls' 调用指令 #6'numIns' 指令数量 #7'numLIs' LogicInstructions 如AND #8'numTIs' 转移指令数量
|
||||||
|
G=data1.raw_graph_list[393].g
|
||||||
|
print "# 一个基本块的特征 #1'consts' 数字常量 #2'strings'字符串常量 #3'offs' offspring 字节点数量? #4'numAs' 算数指令如INC #5'numCalls' 调用指令 #6'numIns' 指令数量 #7'numLIs' LogicInstructions 如AND #8'numTIs' 转移指令数量"
|
||||||
|
print G.node[0]
|
||||||
|
print "\n"
|
||||||
|
# for key, value in G.node[0].items():
|
||||||
|
# print('{key}:{value}'.format(key=key, value=value))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#oldg就是读取IDA的CFG,所以数量、方向等都一样;g根据old_g生成,也一样
|
||||||
|
#old g
|
||||||
|
G = data1.raw_graph_list[393].old_g
|
||||||
|
nx.draw(G,with_labels=True)
|
||||||
|
#plt.title('old_g')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# g
|
||||||
|
G = data1.raw_graph_list[393].g
|
||||||
|
nx.draw(G,with_labels=True)
|
||||||
|
#plt.title('Genius_g')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# draw graph with labels
|
||||||
|
pos = nx.spring_layout(G)
|
||||||
|
nx.draw(G, pos)
|
||||||
|
node_labels = nx.get_node_attributes(G, 'v') #networkx的node,由属性。g的属性为'v',意为原始特征的vector。old_g的属性见cfg_constructor.py
|
||||||
|
nx.draw_networkx_labels(G, pos, labels=node_labels)
|
||||||
|
#plt.title('Genius_g with raw feature vector')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# 1 function calls(本函数的函数调用指令(call jal jalr)数量)。。注意arm中没有这些指令
|
||||||
|
|
||||||
|
# 2 logic instructions ,本函数的逻辑运算指令数量。如and、or的数量
|
||||||
|
|
||||||
|
# 3 TransferIns 转移指令(如jmp arm中为mov)数量
|
||||||
|
|
||||||
|
# 4 LocalVariables 局部变量数量
|
||||||
|
|
||||||
|
# 5 BB basicblocks数量
|
||||||
|
|
||||||
|
# 6 Edges icfg edges数量。icfg是另一篇论文dicovRe中的特征,这里暂时不管
|
||||||
|
|
||||||
|
# 7 IncommingCalls,调用本函数的指令数量
|
||||||
|
|
||||||
|
# 8 Intrs 指令数量
|
||||||
|
|
||||||
|
# 9 between 结构特征中的betweeness。
|
||||||
|
|
||||||
|
# 10 strings 字符串
|
||||||
|
|
||||||
|
# 11 consts 数字常量
|
Loading…
Reference in New Issue
Block a user