批量化操作

This commit is contained in:
huihun 2024-03-01 14:45:10 +08:00
parent 8063d079db
commit 0f1e3378a2
2 changed files with 173 additions and 142 deletions

View File

@ -1,4 +1,5 @@
# coding=utf-8
import hashlib
import pickle as pk
import re
import json
@ -6,125 +7,133 @@ import os
from tqdm import tqdm
def convert(start, end, overhaul):
for workflow in range(start, end):
# workflow = 0
cfg_dir = "D:\\hkn\\infected\\datasets\\virusshare_infected{}_cfg".format(workflow)
output_dir = "D:\\hkn\\infected\\datasets\\virusshare_infected{}_json".format(workflow)
dot_dir = "D:\\hkn\\infected\\datasets\\virusshare_infected{}_dot".format(workflow)
def calc_sha256(file_path):
with open(file_path, 'rb') as f:
bytes = f.read()
sha256obj = hashlib.sha256(bytes)
sha256 = sha256obj.hexdigest()
return sha256
log_path = "D:\\hkn\\infected\\datasets\\logging\\convert_log{}.log".format(workflow)
process_log_path = "D:\\hkn\\infected\\datasets\\logging\\convert_process_log{}.log".format(workflow)
if overhaul:
if os.path.exists(log_path):
os.remove(log_path)
if os.path.exists(process_log_path):
os.remove(process_log_path)
def convert_malware(overhaul):
cfg_dir = "D:\\bishe\\dataset\\infected\\infected_cfg"
output_dir = "D:\\bishe\\dataset\\infected\\infected_jsonl"
dot_dir = "D:\\bishe\\dataset\\infected\\infected_dot"
raw_dir = "D:\\bishe\\dataset\\train_malware"
with open(log_path, 'a+') as log, open(process_log_path, 'a+') as process_log:
logged = log.readline()
if logged == '':
log_index = 0
log_path = "D:\\bishe\\dataset\\logging\\convert_malware_log.log"
process_log_path = "D:\\bishe\\dataset\\logging\\convert_malware_process_log.log"
if overhaul:
if os.path.exists(log_path):
os.remove(log_path)
if os.path.exists(process_log_path):
os.remove(process_log_path)
with open(log_path, 'a+') as log, open(process_log_path, 'a+') as process_log:
logged = log.readline()
if logged == '':
log_index = 0
else:
log_index = int(logged)
for index, cfg in enumerate(tqdm(os.listdir(cfg_dir))):
if index < log_index:
continue
name = cfg[:-4] # 纯文件名,不带后缀
cfg_file = open(os.path.join(cfg_dir, name + '.ida'), 'r')
try:
data = pk.load(cfg_file)
except EOFError:
process_log.write("index {}, {} process failed. EOFError occurred.\n".format(index, cfg))
continue
except ValueError:
process_log.write("index {}, {} process failed. ValueError occurred.\n".format(index, cfg))
continue
finally:
cfg_file.close()
dot_file_path = os.path.join(dot_dir, name + '.dot')
if not os.path.exists(dot_file_path):
process_log.write("index {}, {} process failed. dot file not exists.\n".format(index, cfg))
else:
log_index = int(logged)
# 打开dot文件获取fcg
raw_function_edges = []
# 2023.8.12 bug fix: ida生成的fcg(.dot)文件包含了所有函数data.raw_graph_list仅包含了内部函数
functions_list = []
with open(dot_file_path, 'r') as dot:
for line in dot:
if '->' in line:
raw_function_edges.append(re.findall(r'\b\d+\b', line))
elif 'label' in line:
functions_list.append(line[line.find('= "') + 3:line.find('",')])
for index, cfg in enumerate(tqdm(os.listdir(cfg_dir))):
if index < log_index:
# 没有内部函数被检测到,正常来说不应该,保险起见还是不要这数据了
if raw_function_edges.__len__() == 0:
continue
name = cfg[:-4] # 纯文件名,不带后缀
cfg_file = open(os.path.join(cfg_dir, name + '.ida'), 'r')
try:
data = pk.load(cfg_file)
except EOFError:
process_log.write("index {}, {} process failed. EOFError occurred.\n".format(index, cfg))
continue
except ValueError:
process_log.write("index {}, {} process failed. ValueError occurred.\n".format(index, cfg))
continue
finally:
cfg_file.close()
# 为当前pe文件创建json对象
json_obj = {
'hash': calc_sha256(raw_dir + "\\" + name),
# 2023.8.12 bug fix: 这里获取的是内部函数的数量
# 'function_number': data.raw_graph_list.__len__(),
'function_number': len(functions_list),
'function_edges': [[int(d[0]) for d in raw_function_edges],
[int(d[1]) for d in raw_function_edges]],
'acfg_list': [],
'function_names': functions_list
}
dot_file_path = os.path.join(dot_dir, name + '.dot')
if not os.path.exists(dot_file_path):
process_log.write("index {}, {} process failed. dot file not exists.\n".format(index, cfg))
else:
# 打开dot文件获取fcg
raw_function_edges = []
# 2023.8.12 bug fix: ida生成的fcg(.dot)文件包含了所有函数data.raw_graph_list仅包含了内部函数
functions_list = []
with open(dot_file_path, 'r') as dot:
for line in dot:
if '->' in line:
raw_function_edges.append(re.findall(r'\b\d+\b', line))
elif 'label' in line:
functions_list.append(line[line.find('= "') + 3:line.find('",')])
# 没有内部函数被检测到,正常来说不应该,保险起见还是不要这数据了
if raw_function_edges.__len__() == 0:
# 2023.8.12 bug fix: data.raw_graph_list是ida检测到的内部函数不包括外部函数因此函数列表和函数数量不能从这里获取
# 读取pkl文件一个acfg由一个函数分解而来
for acfg in data.raw_graph_list:
# 函数为外部函数不需要构建cfg
if acfg.funcname != 'start' and acfg.funcname != 'start_0' and 'sub_' not in acfg.funcname:
continue
# 为当前pe文件创建json对象
json_obj = {
'hash': data.binary_name[11:],
# 2023.8.12 bug fix: 这里获取的是内部函数的数量
# 'function_number': data.raw_graph_list.__len__(),
'function_number': len(functions_list),
'function_edges': [[int(d[0]) for d in raw_function_edges],
[int(d[1]) for d in raw_function_edges]],
'acfg_list': [],
'function_names': functions_list
# 这里2是因为Genius框架提取特征时将后代数量放在2
offspring = [d.get('v')[2] for d in acfg.g.node.values()]
# 这边可能会出现不知名的原因两个数组长度不一致,按理来说应该是一致的
# 以框架为主将bb_features数组削减为和g.node长度一致
diff = acfg.g.__len__() - len(acfg.bb_features)
if diff != 0:
del acfg.bb_features[diff:]
# 将后代数量的特征放入bb_features中
for i, offs in enumerate(offspring):
acfg.bb_features[i].append(offs)
acfg_item = {
'block_number': acfg.g.__len__(),
'block_edges': [[d[0] for d in acfg.g.edges], [d[1] for d in acfg.g.edges]],
'block_features': acfg.bb_features
}
# 2023.8.12 bug fix: data.raw_graph_list是ida检测到的内部函数不包括外部函数因此函数列表和函数数量不能从这里获取
# 读取pkl文件一个acfg由一个函数分解而来
for acfg in data.raw_graph_list:
# 函数为外部函数不需要构建cfg
if acfg.funcname != 'start' and acfg.funcname != 'start_0' and 'sub_' not in acfg.funcname:
continue
json_obj['acfg_list'].append(acfg_item)
# json_obj['function_names'].append(acfg.funcname)
# 这里2是因为Genius框架提取特征时将后代数量放在2
offspring = [d.get('v')[2] for d in acfg.g.node.values()]
# 这边可能会出现不知名的原因两个数组长度不一致,按理来说应该是一致的
# 以框架为主将bb_features数组削减为和g.node长度一致
diff = acfg.g.__len__() - len(acfg.bb_features)
if diff != 0:
del acfg.bb_features[diff:]
# 将后代数量的特征放入bb_features中
# 将结果写入json本地文件
result = json.dumps(json_obj, ensure_ascii=False)
for i, offs in enumerate(offspring):
acfg.bb_features[i].append(offs)
with open(os.path.join(output_dir, name + '.jsonl'), 'w') as out:
out.write(result)
acfg_item = {
'block_number': acfg.g.__len__(),
'block_edges': [[d[0] for d in acfg.g.edges], [d[1] for d in acfg.g.edges]],
'block_features': acfg.bb_features
}
json_obj['acfg_list'].append(acfg_item)
# json_obj['function_names'].append(acfg.funcname)
# 将结果写入json本地文件
result = json.dumps(json_obj, ensure_ascii=False)
with open(os.path.join(output_dir, name + '.jsonl'), 'w') as out:
out.write(result)
log.truncate(0)
log.seek(0)
log.write(str(index))
log.flush()
process_log.write("index {}, {} process done.\n".format(index, cfg))
log.truncate(0)
log.seek(0)
log.write(str(index))
log.flush()
process_log.write("index {}, {} process done.\n".format(index, cfg))
def convert_benign(overhaul):
cfg_dir = "F:\\kkk\\dataset\\benign\\refind_cfg"
dot_dir = "F:\\kkk\\dataset\\benign\\refind_dot"
output_dir = "F:\\kkk\\dataset\\benign\\refind_jsonl"
cfg_dir = "D:\\bishe\\dataset\\benign\\refind_cfg"
dot_dir = "D:\\bishe\\dataset\\benign\\refind_dot"
output_dir = "D:\\bishe\\dataset\\benign\\refind_jsonl"
raw_dir = "D:\\bishe\\dataset\\train_benign"
log_path = "D:\\hkn\\infected\\datasets\\logging\\convert_benign_log.log"
process_log_path = "D:\\hkn\\infected\\datasets\\logging\\convert_benign_process_log{}.log"
log_path = "D:\\bishe\\dataset\\logging\\convert_benign_log.log"
process_log_path = "D:\\bishe\\dataset\\logging\\convert_benign_process_log.log"
if overhaul:
if os.path.exists(log_path):
@ -145,6 +154,7 @@ def convert_benign(overhaul):
continue
name = cfg[:-4] # 纯文件名
cfg_file = open(os.path.join(cfg_dir, name + '.ida'), 'r')
try:
data = pk.load(cfg_file)
@ -180,7 +190,7 @@ def convert_benign(overhaul):
# 为当前pe文件创建json对象
json_obj = {
'hash': data.binary_name[11:],
'hash': calc_sha256(raw_dir + "\\" + name),
# 2023.8.12 bug fix: 这里获取的是内部函数的数量
# 'function_number': data.raw_graph_list.__len__(),
'function_number': len(functions_list),
@ -233,4 +243,6 @@ def convert_benign(overhaul):
if __name__ == '__main__':
# convert(35, 69)
convert_benign(False)
# convert_benign(True)
convert_benign(True)
convert_malware(True)

View File

@ -1,54 +1,73 @@
# -*- coding: UTF-8 -*-
import pickle
from func import *
from idc import *
# coding=utf-8
import os
import pickle
import idc
import idaapi
# 定义常量
DATA_DIR = "D:\\bishe\\dataset"
INFECTED_DIR = os.path.join(DATA_DIR, "infected")
BENIGN_DIR = os.path.join(DATA_DIR, "benign")
CFG_EXTENSION = ".ida"
GDL_EXTENSION = ".dot"
ASM_EXTENSION = ".asm"
def preprocess():
# E:\BaiduNetdiskDownload\IDA_Pro_v6.8\IDA_Pro_v6.8\idaq.exe -c -S"raw-feature-extractor/preprocessing_ida.py --path C:\Program1\pycharmproject\Genius3\acfgs" hpcenter
# print str(sys.argv) #['raw-feature-extractor/preprocessing_ida.py']
# print str(idc.ARGV) #['raw-feature-extractor/preprocessing_ida.py', '--path', 'C:\\Program1\\pycharmproject\\Genius3\\acfgs']
# print idc.ARGV[2]
# print type(idc.ARGV[2])
def preprocess(binary_name, workflow):
cfg_path = os.path.join(
INFECTED_DIR if workflow != "-1" else BENIGN_DIR,
f"{binary_name}{CFG_EXTENSION}"
)
gdl_path = os.path.join(
INFECTED_DIR if workflow != "-1" else BENIGN_DIR,
f"{binary_name}{GDL_EXTENSION}"
)
asm_path = os.path.join(
INFECTED_DIR if workflow != "-1" else BENIGN_DIR,
f"{binary_name}{ASM_EXTENSION}"
)
binary_name = idc.GetInputFile()
workflow = idc.ARGV[1]
# workflow为特定值时分析良性软件否则分析恶意软件
if workflow == '-1':
cfg_path = "D:\\bishe\\dataset\\benign\\refind_cfg\\{}.ida".format(binary_name)
gdl_path = "D:\\bishe\\dataset\\benign\\refind_dot\\{}.dot".format(binary_name)
asm_path = "D:\\bishe\\dataset\\benign\\refind_asm\\{}.asm".format(binary_name)
if os.path.exists(cfg_path):
idc.Exit(0)
else:
cfg_path = "D:\\bishe\\dataset\\infected\\infected_cfg\\{}.ida".format(binary_name)
gdl_path = "D:\\bishe\\dataset\\infected\\infected_dot\\{}.dot".format(binary_name)
asm_path = "D:\\bishe\\dataset\\infected\\infected_asm\\{}.asm".format(binary_name)
analysis_flags = idc.GetShortPrm(idc.INF_START_AF)
analysis_flags &= ~idc.AF_IMMOFF
idc.SetShortPrm(idc.INF_START_AF, analysis_flags)
analysis_flags = idc.GetShortPrm(idc.INF_START_AF)
analysis_flags &= ~idc.AF_IMMOFF
idc.SetShortPrm(idc.INF_START_AF, analysis_flags)
idaapi.autoWait()
idaapi.autoWait()
# 生成pe文件的cfg列表
# 生成CFG
generate_cfg(binary_name, cfg_path)
# 生成GDL
generate_gdl(gdl_path)
# 生成ASM
generate_asm(asm_path)
# 关闭IDA Pro
idc.Exit(0)
def generate_cfg(binary_name, cfg_path):
cfgs = get_func_cfgs_c(FirstSeg())
# 将cfg保存为.ida
pickle.dump(cfgs, open(cfg_path, 'w'))
with open(cfg_path, 'wb') as cfg_file:
pickle.dump(cfgs, cfg_file)
# 生成pe文件的fcg保存为.dot文件
# idc.GenCallGdl(gdl_path, 'Call Gdl', idc.CHART_GEN_GDL) 这个生成gdl文件网上几乎找不到gdl这个格式
def generate_gdl(gdl_path):
idc.GenCallGdl(gdl_path, 'Call Gdl', idaapi.CHART_GEN_DOT)
# 生成.asm文件
def generate_asm(asm_path):
idc.GenerateFile(idc.OFILE_ASM, asm_path, 0, idc.BADADDR, 0)
# 关闭IDA Pro
idc.Exit(0)
# 主函数
def main():
binary_name = idc.GetInputFile()
try:
workflow = idc.ARGV[1]
except IndexError:
print("Workflow argument not provided.")
return
preprocess(binary_name, workflow)
# 通用命令行格式 idaq64 -c -A -S"preprocessing_ida.py arg1 arg2" VirusShare_bca58b12923073
# 此处使用 idaq64 -c -A -S"preprocessing_ida.py workflow" -oF:\iout pe_path完整命令行如下
# F:\kkk\IDA_6.6\idaq64 -c -A -S"D:\hkn\project_folder\Gencoding3\Genius3\raw-feature-extractor\preprocessing_ida.py 0" -oF:\iout D:\hkn\infected\datasets\virusshare_infected0\VirusShare_bc161e5e792028e8137aa070fda53f82
# D:\IDA_Pro_v6.8\idaq64.exe -c -A -S"D:\bishe\Gencoding_KE\Genius3\raw-feature-extractor\preprocessing_ida.py 0" -oD:\bishe\dataset\out D:\bishe\dataset\train_malware\0ACDbR5M3ZhBJajygTuf
if __name__ == '__main__':
preprocess()
# 如果是作为IDA Pro的脚本运行调用主函数
if __name__ == "__main__":
main()