''' To use: python with_true_label_train.py --starting 2011 GOAL: generate the original detection model for the starting year (applying all data from the starting year as training data) ''' import numpy as np import scipy from scipy.stats import logistic from scipy.special import expit from numpy import dot import sklearn from sklearn.datasets import load_svmlight_file import os import sys import string from decimal import * import collections from classifiers import * import time import random import argparse def main(): parser = argparse.ArgumentParser() parser.add_argument('--starting', type=int, help='directory for initialization data') # to use = args.past args = parser.parse_args() starting_year = args.starting X_train,Y_train=load_svmlight_file(str(starting_year)) print 'X_train data shape' , type(X_train), X_train.shape global clfs clfs = [PA1(), OGD(), AROW(), RDA(), ADA_FOBOS()] print 'model pool size: ', len(clfs) ori_train_acc = [] directory = './' + str(starting_year) + 'train/' if not os.path.exists(directory): os.makedirs(directory) # training process of all models print 'All model initialization' for i in xrange(len(clfs)): # i = every model in model pool print clfs[i] print 'training' train_accuracy,data,err,fit_time=clfs[i].fit(X_train,Y_train, False) ori_train_acc.append(train_accuracy) clfs[i].save('./' + str(starting_year) + 'train/' + str(starting_year) + '_' + str(i) + '.model') print 'original model accuracy', ori_train_acc if __name__ == "__main__": main()