diff --git a/model_pool_construction.py b/model_pool_construction.py deleted file mode 100644 index a43bb3a..0000000 --- a/model_pool_construction.py +++ /dev/null @@ -1,56 +0,0 @@ -''' -GOAL: generate the initial detection model for the starting year -''' -import numpy as np -import scipy -from scipy.stats import logistic -from scipy.special import expit -from numpy import dot -import sklearn -from sklearn.datasets import load_svmlight_file -import os -import sys -import string -from decimal import * -import collections -from classifiers import * -import time -import random -import argparse - -def main(): - - parser = argparse.ArgumentParser() - parser.add_argument('--starting', type=int, help='directory for initialization data') - args = parser.parse_args() - - starting_year = args.starting - - X_train,Y_train=load_svmlight_file(str(starting_year)) - print 'X_train data shape' , type(X_train), X_train.shape - - global clfs - - clfs = [PA1(), OGD(), AROW(), RDA(), ADA_FOBOS()] - - print 'model pool size: ', len(clfs) - - ori_train_acc = [] - - directory = './' + str(starting_year) + 'train/' - if not os.path.exists(directory): - os.makedirs(directory) - - # training process of all models - print 'All model initialization' - for i in xrange(len(clfs)): # i = every model in model pool - print clfs[i] - print 'training' - train_accuracy,data,err,fit_time=clfs[i].fit(X_train,Y_train, False) - ori_train_acc.append(train_accuracy) - clfs[i].save('./' + str(starting_year) + 'train/' + str(starting_year) + '_' + str(i) + '.model') - - print 'original model accuracy', ori_train_acc - -if __name__ == "__main__": - main()