DroidEvolver/model_pool_construction.py

58 lines
1.5 KiB
Python
Raw Normal View History

2019-06-13 18:31:42 +08:00
'''
Construct model pool according to initialization dataset, e.g., apps developed in 2011
'''
import numpy as np
import scipy
from scipy.stats import logistic
from scipy.special import expit
from numpy import dot
import sklearn
from sklearn.datasets import load_svmlight_file
import os
import sys
import string
from decimal import *
import collections
from classifiers import *
import time
import random
import argparse
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--starting', type=int, help='initialization dataset') # to use = args.initialization
args = parser.parse_args()
starting_year = args.starting
X_train,Y_train=load_svmlight_file(str(starting_year) + '.libsvm')
print 'X_train data shape' , type(X_train), X_train.shape
global clfs
clfs = [PA1(), OGD(), AROW(), RDA(), ADA_FOBOS()]
print 'model pool size: ', len(clfs) # number of models in the model pool
ori_train_acc = []
directory = './' + str(starting_year) + 'train/'
if not os.path.exists(directory):
os.makedirs(directory)
# initialization process of all models
print 'All model initialization'
for i in xrange(len(clfs)): # i = every model in model pool
print clfs[i]
print 'training'
train_accuracy,data,err,fit_time=clfs[i].fit(X_train,Y_train, False)
ori_train_acc.append(train_accuracy)
clfs[i].save('./' + str(starting_year) + 'train/' + str(starting_year) + '_' + str(i) + '.model')
print 'original model accuracy', ori_train_acc
if __name__ == "__main__":
main()