DroidEvolver/model_pool_construction.py

60 lines
1.5 KiB
Python
Raw Normal View History

2019-02-02 17:28:47 +08:00
'''
To use: python with_true_label_train.py --starting 2011
GOAL: generate the original detection model for the starting year (applying all data from the starting year as training data)
'''
import numpy as np
import scipy
from scipy.stats import logistic
from scipy.special import expit
from numpy import dot
import sklearn
from sklearn.datasets import load_svmlight_file
import os
import sys
import string
from decimal import *
import collections
from classifiers import *
import time
import random
import argparse
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--starting', type=int, help='directory for initialization data') # to use = args.past
args = parser.parse_args()
starting_year = args.starting
X_train,Y_train=load_svmlight_file(str(starting_year))
print 'X_train data shape' , type(X_train), X_train.shape
global clfs
clfs = [PA1(), OGD(), AROW(), RDA(), ADA_FOBOS()]
print 'model pool size: ', len(clfs)
ori_train_acc = []
directory = './' + str(starting_year) + 'train/'
if not os.path.exists(directory):
os.makedirs(directory)
# training process of all models
print 'All model initialization'
for i in xrange(len(clfs)): # i = every model in model pool
print clfs[i]
print 'training'
train_accuracy,data,err,fit_time=clfs[i].fit(X_train,Y_train, False)
ori_train_acc.append(train_accuracy)
clfs[i].save('./' + str(starting_year) + 'train/' + str(starting_year) + '_' + str(i) + '.model')
print 'original model accuracy', ori_train_acc
if __name__ == "__main__":
main()