
Compromising Industrial Processes using
Web-Based Programmable Logic Controller Malware

Anonymous Author(s)
ABSTRACT
We present a novel approach to developing programmable logic
controller (PLC) malware that proves to be more flexible, resilient,
and impactful than current strategies. While previous attacks on
PLCs infect either the control logic or firmware portions of PLC
computation, our proposed malware exclusively infects the web
application hosted by the emerging embedded web servers within
the PLCs. This strategy allows the malware to stealthily attack
the underlying real-world machinery using the legitimate web ap-
plication program interfaces (APIs) exposed by the admin portal
website. Such attacks include falsifying sensor readings, disabling
safety alarms, and manipulating physical actuators. Furthermore,
this approach has significant advantages over existing PLCmalware
techniques (control logic and firmware) such as platform indepen-
dence, ease-of-deployment, and higher levels of persistence. Our
research shows that the emergence of web technology in indus-
trial control environments has introduced new security concerns
that are not present in the IT domain or consumer IoT devices. De-
pending on the industrial process being controlled by the PLC, our
attack can potentially cause catastrophic incidents or even loss of
life. We verified these claims by performing a Stuxnet-style attack
using a prototype implementation of this malware on a widely-used
PLC model by exploiting zero-day vulnerabilities that we discov-
ered during our research1. Our investigation reveals that every
major PLC vendor (80% of global market share [5]) produces a PLC
that is vulnerable to our proposed attack vector. Lastly, we discuss
potential countermeasures and mitigations.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
ICS, Programmable Logic Controller, Malware, Malicious JavaScript
ACM Reference Format:
Anonymous Author(s). 2023. Compromising Industrial Processes usingWeb-
Based Programmable Logic Controller Malware. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security (CCS
’23), November 26–30, 2023, Copenhagen, Denmark. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3460120.3484581

1These issues were disclosed to the vendor and fixed as CVE-2022-45137, CVE-2022-
45138, CVE-2022-45139, and CVE-2022-45140.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484581

1 INTRODUCTION
Industrial Control Systems. Industrial control systems (ICSs)
can be abundantly found in many critical infrastructure sectors
including the electric grid, pharmaceutical, and manufacturing in-
dustries [58]. ICSs integrate IT capabilities such as monitoring and
communication with physical system control [9]. This integration
has resulted in today’s “smart” industrial technologies such as the
smart electric grid and smart manufacturing, which provide opera-
tional convenience and increased sustainability [58]. Unfortunately,
the rise of smart industrial technologies has also expanded the ICS
attack surface. The ICS cybersecurity market is projected to grow
from $13.20B USD in 2019 to $18.05B USD by 2024 [2].

Programmable Logic Controllers. Programmable logic con-
trollers (PLCs) are considered the core component of ICSs because
they monitor sensors and manipulate actuators using local auto-
matic control. PLCs take raw data from sensors, perform calcu-
lations based on control logic, and send commands to physical
actuators to control the real-world processes [32]. Process Engi-
neers are responsible for programming PLCs using an IEC 61131-3
compliant control language such as ladder diagram (LD) through
proprietary engineering software on an engineering workstation
(EWS). These EWSs compile the written PLC programs into binary
executables that can be run by the processors of the PLCs in a
user-code sandbox. PLCs also utilize a firmware layer to provide
the low-level interface between the hardware and the control logic.

In recent years, this firmware layer has also begun to include
a customizable embedded web server, which provides customers
with a convenient method for accessing both administrative config-
urations and physical process monitoring/control via standard web
browsers. This emerging trend has transformed the ICS ecosystem
in profound and irreversible ways. Unfortunately, our research has
uncovered that this transformation has also introduced new web-
oriented security concerns that are specific to ICS environments.
These security concerns are not simply the standard baggage caused
by web technology in the IT domain, but rather are issues unique
to the conditions caused by industrial control environments and
hierarchical network architecture (i.e. Purdue Enterprise Reference
Architecture [PERA]).

Real-World Attacks.While it may seem that ICSs, and PLCs
in particular, are impossible targets for attackers because they are
mostly disconnected from the public Internet, this notion is sim-
ply not true as demonstrated by the emergence of recent severe
attacks in this domain [1, 16, 17, 20, 31, 35]. The Stuxnet [20, 35]
worm targeted Iranian Uranium enrichment facilities in 2010. A
few years later in 2015 and 2016, the Ukrainian power grid ex-
perienced two widespread blackouts caused by the BlackEnergy
3 malware [16, 31]. More recently, Triton (i.e., “the world’s most
murderous malware”) [17] targeted a Saudi petrochemical plant
in 2017, where the malware disabled safety instrumented systems
(SISs) of the plant to cause sabotage in the underlying physical

https://doi.org/10.1145/3460120.3484581
https://doi.org/10.1145/3460120.3484581


process. These real-world examples of successful ICS attacks show
that persistent bad actors are able to infiltrate segregated industrial
networks using a variety of techniques (e.g., Out of Band malware
infections, malicious USB drives, insider threats, etc).

Existing PLC Malware and Shortcomings. The ultimate goal
of many ICS attacks is to somehow infect PLCs with malicious
software (i.e., “PLC malware”). This is usually done via the final
payload of an advanced ICS attack (e.g., Stuxnet [35]). PLCs are typ-
ically thought to only run software at two different levels: firmware
and control logic. This preconception has engendered numerous
research works and real-world attacks exploring malware imple-
mented at both levels with firmware rootkits (e.g., HARVEY [21])
implemented in assembly code and control logic malware (e.g.,
LLB [28]) implemented in LD or another PLC control language.
Fortunately for ICSs, both of these approaches have substantial
drawbacks that make them impractical for casual adversaries. Such
drawbacks include infection difficulty (e.g., requiring physical or
network access), fully-offline operation (e.g., trapped in segregated
industrial networks), platform dependence (e.g., requiring model-
specific payloads), and low-persistence (e.g., trivially erased with
factory resets).

Proposed Web-Based PLC Malware. In this paper, we intro-
duce a new strategy for developing PLC malware that infects the
front-end web layer with malicious JavaScript code. This malware,
which we call Web-Based (WB) PLC malware, is fundamentally
different than prior approaches and overcomes all of the drawbacks
of those strategies. Our WB PLC malware resides in PLC memory,
but ultimately gets executed by various browser-equipped devices
throughout the ICS environment. From there, the malware uses
ambient browser-based credentials to interact with the PLC’s le-
gitimate web APIs to attack the underlying real-world machinery.
Our paper demonstrates that this type of malware is much easier to
deploy against a real-world ICS, is capable of online operations, is
largely platform independent, and achieves extremely high levels
of persistence.

Consumer vs Industrial EmbeddedWeb Servers. Prior work
has shown that consumer “Internet of Things” (IoT) devices such
as printers and home routers may also incorporate embedded web
servers for ad-hoc administrative control [13]. While these house-
hold embedded web servers do introduce their own security con-
cerns, they are primarily limited to basic entry-point attacks such
as weak authentication and default passwords because these web
servers typically only host simplistic vendor-authored setup wiz-
ards used for an initial 1-time configuration [27]. On the contrary,
embedded web servers in the ICS domain are used for continuous
monitoring and control via programmable web applications con-
sumed by dedicated client hardware (e.g., WAGO eDisplay! 7300
Microbrowser). This unique utilization of embedded web technolo-
gies introduces a new attack vector not applicable to consumer
devices - persistent and covert front-end code execution. In the ICS
domain, malicious front-end code can be pushed to a programmable
controller through the legitimate channels discussed in Section 4.2
and perpetually executed on a multitude of browser-equipped de-
vices throughout the industrial network [47]. Table 1 summarizes
the key differences between embedded web technology in the IT
domain vs ICS domain and illustrates how PLCs are uniquely sus-
ceptible to web-based malware attacks.

Table 1: Embedded Web Technology in IT vs. ICS Domains

Web Server
Purpose

Front-End
Code Author Web Client Web Attack

Vector

IoT Initial 1-time
Setup

Device
Manufacturer

Browser on
Personal
Device

Standard Web
Vulnerabilities

PLC
Continuous
Monitoring &

Control

Customer &
Device

Manufacturer

Dedicated
Hardware

Persistent and
Covert Code
Execution

Contribution. Our main contributions are as follows:

(1) We introduce the concept of WB PLCmalware, which proves
to be more flexible (e.g., platform-agnostic), resilient (e.g.,
persists across factory resets), and impactful (e.g., physical
sabotage w/ real-time Command & Control) than prior PLC
malware infections (control logic or firmware);

(2) We developed a cross-platform framework that outlines how
methodically compromising embedded PLC web servers can
sabotage industrial processes;

(3) We implemented a prototype of WB PLC malware, dubbed
Iron Spider , on a widely-used PLC model to show its ef-
fectiveness compared to existing PLC malware techniques
in a Stuxnet-style attack. Iron Spider exploited four zero-
day vulnerabilities that we discovered during our research
(CVE-2022-45137, CVE-2022-45138, CVE-2022-45139, and
CVE-2022-45140);

(4) We propose practical countermeasures to mitigate the risk of
the developed attacks or significantly reduce their damaging
consequences;

Furthermore, we experimentally verified that every PLC model
included in our study, namely Siemens S7-1200, Schneider TM241C,
Allen-Bradley MicroLogix 1400, Mitsubishi MELSEC-F, GE/Emer-
son RX7i, and WAGO 750 (these vendors account for over 80% of
global PLC market share [5]), is vulnerable to some sort of WB PLC
malware. The rest of this paper is organized as follows. Section 2
discusses background information about ICS networks and PLCs
operations. Section 3 introduces our proposed WB PLC malware
and compares it to related work. The details about our multi-stage
attack method are given in Section 4. Section 5 presents our experi-
mental results and performance evaluations. Finally, Section 6 is
the conclusion of the paper.

2 BACKGROUND
ICS Network Architecture. An understanding of ICS network
architecture is needed to appreciate the unique characteristics of
our proposed malware. Figure 1.A shows the most common archi-
tecture, PERA, which represents the various layers of ICS networks,
separated into functionally distinct groups [67].

At the top, we have Level 4/5 where the primary business func-
tions occur. This layer is typically contained within the IT/business
network and is connected to the public Internet through a firewall.
This level provides business direction and orchestrates manufactur-
ing operations.

In Level 3, the production workflow is managed in remote control
centers. This layer consists of data historians to record operations



data as well as EWSs and remote Human-Machine Interfaces (HMIs)
that program and monitor local controllers (e.g., PLCs). This layer
poses a significant challenge to network isolation because it often
contains “dual-homed” devices with simultaneous connectivity to
both the IT/Business network and the segregated industrial net-
work [11].

In Level 2, Supervisory Control and Data Acquisition (SCADA)
software and local HMIs are located within a geographically close
distance to the physical plant. These HMIs are again used tomonitor
and control the underlying physical processes of PLCs. Devices in
this layer and below are exclusively connected to the industrial
network, thus typically do not have any connection to the public
internet.

In Level 1, local controllers such as PLCs perform sensing and
manipulation of physical processes using sensors and actuators
with a closed-loop control structure. Finally, Level 0 defines the
actual physical processes.

Emerging Web-Based ICS Services. Modern PLCs run a vari-
ety of network services in their firmware layer such as a Modbus
TCP Server, a DHCP client, and an SNMP agent. Some of these
services are utilized by complimentary ICS systems (e.g., SCADA)
while others are available for basic networking configuration (to
establish an IP address, etc).

A relatively recent addition to the list of PLC network services is
the embedded web server. In the early 2010’s, PLCs hosted modest
admin portal websites that consisted of mostly static HTML pages
to display configuration details. Nowadays, PLCs host complex and
customizable Single Page Applications (SPAs) with a suite of web-
based APIs to manage nearly all PLC operations, including physical
process monitoring and control. This functionality has become so
ubiquitous in the ICS ecosystem that virtually every major PLC
vendor today includes an embedded web server in their flagship
product [57], and these web servers tend to gain additional capabil-
ities with every firmware update [52, 64]. A clear advantage of this
web-based architecture is that any browser-equipped device can
now configure and control the PLC (a task that previously required
proprietary engineering software and clunky HMI clients [47]).
This design has resulted in web browsers being abundantly found
in all layers of modern ICS environments [48]. Legacy ICS equip-
ment that communicated over serial protocols have been replaced
with single-purpose microbrowser touch screens and even tablets
or smartphones. Many of these devices display the web application
24/7 using a mounted display panel [56].

While the advantages of hosting web-based services are undeni-
able, they do blur the lines between the conceptual layers proposed
by the original 1990’s PERA model. Today’s PLCs still live in level
1, however their web interfaces are utilized by HMIs in level 2 and
EWSs in level 3. Furthermore, external front-end dependencies,
such as Content Delivery Network (CDN) hosted JavaScript/CSS
files, are loaded from the public internet, making them traverse
level 4/5.

Empirically Measured ICS Web Trends. To give the reader
confidence that web technology in the ICS domain is in fact gaining
attention from both PLC vendors and customers, we performed a se-
ries of empirical studies. Our studies, combined with published data

by industry leaders [48] and Internet-wide statistics [7], demon-
strate that web applications do provide a realistic attack surface in
modern PLCs.

We independently confirmed that embedded PLC web servers
are indeed gaining functionality over time by analyzing the total
Source Lines of Code (SLOC) and cyclomatic complexity [24] of the
web-related codebases of multiple unpacked WAGO firmware up-
date images. Source code size and program complexity are common
metrics in software analysis to gauge the capabilities/functionality
of a given application [40]. Firmware version 3.0.39 (released May
2019) contained 2,194 total SLOC (587 JS; 1,607 PHP) and an ag-
gregate cyclomatic complexity score of 199 (82 JS; 117 PHP) while
version 03.09.05 (released in March 2022) contained 15,086 total
SLOC (12,471 JS; 2,615 PHP) and an aggregate cylomatic complexity
of 3,779 (3,657 JS; 122 PHP). This data shows that over the past 3
years, the web application codebase has grown by over 688% and
increased in complexity by over 7,581%. All source code analyzed
in our study is used solely by the embedded web application, thus
corroborating the claim that PLC vendors are actively introducing
additional functionality to their on-board web applications.

We also experimentally verified that customers are increasingly
using these embedded web servers by performing a modest lon-
gitudinal survey of internet-facing devices using the Shodan [49]
search engine. We analyzed the publicly-reachable population of
three widely-used PLCs (WAGO 750, Siemens S7-1200, and AB Mi-
croLogix 1400) from June 2017 to Septemeber 2022. We discovered
that on average, embedded web server usage has increased 212.66%
over the past 5 years, even though overall PLC population has only
increased by 12.15%. We came to this conclusion by observing the
rate at which the web servers became internet-facing (discovered
using web fingerprints such as SSL issuers and favicon hashes)
and comparing it to the rate at which the SNMP services appeared
online (discovered using keywords on the 161 UDP port). This data
provides strong evidence that customers are indeed enabling and
using these web servers. Our results are in-line with previously
published data regarding the adoption of web technology [7, 48]
and further supports the intuitive claim that PLC customers are
embracing web-based app design. The remainder of this paper will
investigate the new attack vector enabled by this emerging trend.

3 RELATEDWORK &WB ADVANTAGES
This section compares our proposed WB PLC malware to existing
PLC malware categories. We aim for this paper to provide com-
pelling evidence that due to the emergence of powerful PLC web
services, system-level compromise of the PLC is no longer necessary
to successfully attack ICSs.

Traditional PLC Malware and Shortcomings. We use the
term “traditional PLC malware” to describe malicious PLC control
logic (CL) programs (e.g., LLB [28]) and malicious PLC firmware
(FW) images (e.g., HARVEY [21]). As discussed in Section 1, these
two strategies are the only publicly known methods of infecting a
PLC with malicious software. Figure 1.B illustrates traditional PLC
malware’s infection scenarios and execution environment in the
context of the PERA model.



Figure A -  
Legitimate Use

PLC/RTU

Le
ve

l 0
Le

ve
l 1

Le
ve

l 2
Le

ve
l 3

EWS Remote HMI

Le
ve

l 4
/5

Office PCPrinter

Industrial N
etw

ork
B

usiness N
etw

ork

Public Internet

Actuator Sensor

Local HMI

Figure B -  
Control Logic or Firmware PLC Malware

B.1 - Infection Scenarios B.2 - Execution

Le
ve

l 2
Le

ve
l 3

Le
ve

l 4
/5

Industrial N
etw

ork
B

usiness N
etw

ork

Public Internet

PLC

Le
ve

l 0
Le

ve
l 1

Actuator Sensor

Attacker

AN

Attacker

AP

PLC

Le
ve

l 0
Le

ve
l 1

Le
ve

l 2
Le

ve
l 3

Le
ve

l 4
/5

Industrial N
etw

ork
B

usiness N
etw

ork

Actuator Sensor

MP ME

Figure C -  
Web-Based PLC Malware

C.1 - Infection Scenarios C.2 - Execution

Le
ve

l 2
Le

ve
l 3

Le
ve

l 4
/5

Industrial N
etw

ork
B

usiness N
etw

ork

PLC

Le
ve

l 0
Le

ve
l 1

Actuator Sensor

Attacker

Attacker

AN

AW

Attacker

AP

Public Internet

PLC

Le
ve

l 0
Le

ve
l 1

Le
ve

l 2
Le

ve
l 3

EWS Remote HMI

Le
ve

l 4
/5

Industrial N
etw

ork
B

usiness N
etw

ork

Public Internet

Actuator Sensor

MP

MEME

C2 Server

Local HMI

ME

Public Internet

Legend

AN
Attacker with
Network Access

AP
Attacker with
Physical Access

AW
Attacker with
Web Access

ME
PLC Malware
Execution Location

MP
PLC Malware
Payload Location

Unique to WB Attack

AW

Figure 1: PLC malware in the PERA Model

Traditional PLC malware infections are possible from two dis-
tinct vantage points - network access (levels 1-3) and physical access
(level 1), as shown in Figure 1.B.1. For example, a malicious control
logic program may be downloaded via a compromised EWS (à la
Stuxnet) or a malicious firmware update may be initiated using
physical access to an exposed JTAG port (à la HARVEY [21]). Both
of these scenarios require sizable prerequisites to be successful
in-practice (e.g., coupled with Windows malware or launched by
human assets).

Once the target PLC has become infected with traditional PLC
malware, the code is both stored and executed on the PLC device
within level 1, as shown in Figure 1.B.2. This constraint requires tra-
ditional PLC malware to abide by the strict hardware requirements
of a real-time operating system (RTOS) with a modest CPU and
limited network connectivity. For example, the firmware malware,
HARVEY, required tedious model-specific firmware reverse engi-
neering and binary instrumentation to carefully inject instructions
in subroutines outside of the time-critical scan cycle and conform
to real-time expectations of the control loop [21]. Even more re-
stricted, control logic malware runs as user-code contained in an
execution sandbox (often referred to as “jail”) and only has access
to specific memory regions and limited control logic APIs provided
by the vendor [30]. In either case, the code exclusively runs in level
1, trapped in the segregated industrial network without a public
internet connection.

Proposed WB PLC Malware and Benefits. Following the re-
cent growing trend of web-based ICS functionalities, we present
a new method for infecting PLCs with malicious software that re-
sults in a radically different type of PLC malware than the previous
approaches. This malware, which we callWeb-Based (WB) PLC mal-
ware, compromises the web application hosted by PLCs’ embedded
web servers with malicious JavaScript code. This code ultimately
gets executed by various browser-equipped devices throughout the
ICS environment (not the PLC itself as in the case for CL and FW
malware). During execution, the malware uses ambient browser-
based credentials to interact with the PLC’s legitimate web APIs to
attack the underlying real-world machinery. Figure 1.C illustrates
WB PLC malware’s infection scenarios and execution environment
in the context of the PERA model.

As shown in Figure 1.C.1, WB malware introduces a new infec-
tion scenario not possible with previous attacks. In this scenario,
which we call “Web Access,” the attacker lures a dual-homed ICS op-
erator within level 3 to view a malicious website. This scenario does
not require the EWS to be compromised (i.e., running a malicious
binary) but rather simply viewing an attacker-controlled website.
This scenario originates from the public internet, above level 4/5,
and uses web technologies to pivot into the private industrial net-
work. An example attack from this scenario is a malicious website
that exploits a Cross-Origin Resource Sharing (CORS) misconfigu-
ration vulnerability to transfer a malicious User-defined Web Page
(UWP) to the PLC’s embedded web server. Additionally, the two
access levels used by traditional PLC malware (network & physical)
are also viable infection methods for WB PLC malware. For exam-
ple, a malicious UWP can be downloaded via an ICS Protocol or a
malicious web-based GUI may be installed via an SD Card. More
details about WB infection mechanisms are presented in Section 4.2.



Table 2 summarizes the viability of different access levels per PLC
malware category.

Figure 1.C.2 illustrates a fundamental difference between our
proposed WB malware and traditional PLC malware - WB mal-
ware decouples where the malware resides and where it executes.
WB malware resides in PLC memory but executes in web browsers
(e.g., Microsoft Edge on an EWS, Chromium-based Microbrowsers
in local HMIs, etc) located in levels 2 and 3, physically detached
from the PLC. These level 3 browsers are also connected to the busi-
ness network to enable public internet access [11]. As a result from
this architecture, WB malware can utilize a web-based Command
& Control (C2) connection, where all C2 communication, initiated
from level 3 browsers, traverses the business network in level 4/5
and escapes to the public internet (see Section 4.4).

Table 2: Viability of Access Levels PLC malware

Web-Based Control Logic Firmware
Physical Access ✓ ✓ ✓

Network Access ✓ ✓ ✓

Web Access ✓

✓= Viable Access Level for malware Infection

Advantages of WB PLC Malware. In addition to the extra
infection scenario and C2 capability mentioned above, WB PLC
malware has several other advantages over traditional PLCmalware,
as discussed in this subsection.

1) One benefit to developing PLCmalware using browser-compatible
JavaScript (instead of vendor-specific control logic or hardware-
specific binary instructions) is that our proposed malware is largely
architecture-agnostic and cross platform. WB malware that has
been developed for a specific PLC model and ICS plant configura-
tion can be easily modified to attack any other PLC in any other
ICS. From our experiments, we estimate that only 5%-10% of WB
malware code needs to be altered to change attack targets. Much of
WB malware functionality such as screenshot exfiltration, virtual
HMI interactions, and C2 channel communications do not need
any alteration whatsoever (resulting in cheaper and faster malware
development for adversaries). On the other hand, the payload de-
velopment for control logic and firmware malware is specific to a
certain PLC model, hardware architecture, and ICS configuration
(I/O pin layout, actuator settings, etc.). Thus, traditional PLC mal-
ware requires significant time, effort, and domain knowledge to
expand to other scenarios.

2) In Section 4.3, we explore how WB malware can be extremely
resilient compared to traditional strategies. Using a combination
of web technologies such as service workers and browser cache,
we developed a WB PLC malware sample, called Iron Spider , that
is capable of surviving PLC factory resets and even physical hard-
ware replacement. This persistence level is much higher than CL
malware, which is erased during control logic updates, and FW
malware, which is erased during firmware updates.

3) In Section 4.4, we describe various methods for WB PLC mal-
ware to perform malicious activities against the ICS environment.
These actions are more impactful than CL malware because they

include altering administrative configurations such as user pass-
words and on-board firewalls, which is not possible using a control
logic program. They are also more impactful than FW malware
because they allow for real-time data exfiltration through level 3
browsers, which is not possible using firmware running in a segre-
gated network.

4) Section 5.3 discusses why existing prevention, detection, and
removal strategies are largely ineffective against WB PLC malware.
Generally speaking, most countermeasures today focus on protect-
ing the control logic and firmware portions of PLC computation,
which are unmodified during our attack. Furthermore, because
our proposed technique executes in web browsers, physically de-
tached from the PLC even physical side channel anomaly detection
strategies fail to detect WB PLC malware.

Considering the advanced capabilities of WB PLC malware, we
claim that this emerging attack surface provides the best envi-
ronment to stealthily attack ICSs. Table 3 summarizes the main
differences between WB malware vs. previously studied PLC mal-
ware categories and shows that WB PLC malware is indeed more
flexible, resilient, and impactful.

Table 3: WB vs. CL vs. FW PLC malware.

Web-Based Control Logic Firmware
Infectability (F) High Medium Low
Platform Independence (F) High Medium Low
Persistence (R) High Low Medium
Malicious Activities (I) High Low Medium
Prevention Evasion (R) High Medium Low
Detection Evasion (R) High Medium Low

(F) = Flexibility; (R) = Resilience; (I) = Impact;

4 WB PLC MALWARE STAGES
This section introduces the stages of our proposedWB PLCmalware
using a vendor-agnostic framework as well as an example imple-
mentation on a widely-used PLC model in a real-world Stuxnet-
style attack.

Vendor-Agnostic Framework.Wedeveloped a general-purpose
framework for building and analyzing WB PLC malware. This
framework explains the malware lifecycle using four distinct stages,
as shown in Figure 3: Initial Infection, Persistence, Malicious Activi-
ties, and Cover Tracks. This framework explores each stage using
widely applicable strategies that can be used against most modern
PLC models. At a high level, the framework presents an overview
of how malicious front-end code can subvert the integrity of ICS
environments by methodically compromising PLCs’ web properties.
This framework can be used as a benchmark in future studies across
any PLC vendor and model.

Example Implementation.Additionally, we implemented each
step of this framework using an example malicious program, which
we call Iron Spider . This program was designed to illustrate the
effectiveness of the WB malware by performing a Stuxnet-style
attack on a popular PLC model (WAGO 750) in a real-world ICS
testbed. The testbed’s main objective is to precisely spin a three-
phase 220VAC industrial motor, representative of the ones used
to power gas centrifuges during the uranium enrichment process.



We used this testbed to demonstrate the core functionality of Iron
Spider , however modern ICSs of any size and complexity are equally
as susceptible to this emerging threat. A detailed description of the
testbed equipment and configurations can be found Section 5.

Public Internet

WAN

LAN

Dual-Homed
EWS

Dual-Homed
Remote HMI PLCLocal HMI

Business Network

Industrial Network

WAN

LAN

IT Firewall

ICS Firewall

ICS Switch

Figure 2: ICS Network Topology

4.1 Threat Model & Assumptions
In this attack, we assume that ICS operators use EWSs that have
simultaneous access to both the business network and the indus-
trial network and that both networks are secured using tightly
configured firewalls. Figure 2 gives a detailed view of the network
topology, which is a typical implementation of the PERA model
in critical infrastructure environments according to surveys con-
ducted by UK’s Centre for the Protection of National Infrastruc-
ture [11]. We also assume that the EWSs are secured using standard
IT best-practices (e.g., up-to-date operating system and browser,
sufficiently strong system password, continuous anti-virus scans,
etc.) and that the PLC is using the most secure settings possible
(e.g., password-protected services, encrypted protocols, up-to-date
firmware, etc.). Lastly, we assume that the adversary has knowledge
of the PLC model being used in the ICS, however does not know its
exact location in the network nor any details about other ICS/net-
working devices (data historians, RTUs, SCADA, routers, switches,
etc). Note that while our testbed accomplishes the multi-network
EWSs via dual-homed Ethernet adapters, this same attack can be
accomplished in any networking configuration as long as the EWS
can simultaneously access both the public web and the private PLCs,
which is a typical case for ICS networks in-practice [11].

4.2 Initial Infection
The initial infection stage of our proposed WB Malware occurs
when the attacker successfully plants malicious JavaScript code in
a context where it will be executed in the same web origin as the
PLC’s admin portal (oftentimes referred to as the “system website”).
Once deployed, our malware will have the same authority as the
PLC’s system website, and thus, identical functionality.

4.2.1 Initial Infection - Framework. Injecting code into the system
website can be accomplished via several different methods includ-
ing malicious User-defined Web Pages (UWPs), hijacked PLC GUI

files, and ICS Cross Channel Scripting (XCS), as explored in this
section. Each injection mechanism has its own strengths and weak-
nesses with varying degrees of practicality. The numerous injection
mechanisms, spanning various technologies, is one of the reasons
why we claim this malware is so flexible.

Malicious User-defined Web Page (UWP). PLC vendors such
as Siemens, Allen Bradley, and Mitsubishi allow customers to write
their ownHTML code to augment the web application hosted by the
PLC’s embedded web server [3, 4, 51]. These custom HTML files are
referred to as “User-defined Web Pages” (UWPs) and are leveraged
to create specialized HMI dashboards. These UWPs are considered
a distinct web property from the system website and have a limited
set of advertised capabilities. UWPs typically have read-only access
to PLC inputs/outputs, and depending on the vendor, may also have
limited write-access to a subset of control logic variables.

The supposed restrictions imposed on UWPs would make most
users assume that the impact of a malicious UWP is quite limited,
however due to an unintended consequence of Same-Origin-Policy
(SOP), the permission boundary of UWPs is actually defined by the
user viewing the UWP and not an intrinsic property of the UWP
itself, despite official vendor documentation stating otherwise [8].
This (seemingly misunderstood) relationship between the system
website and UWPs allows a malicious UWP, when viewed by an
administrator, to take full administrative control over the PLC.
Thus, a malicious UWP is a viable injection mechanism to plant
WB PLC malware. To help mitigate the impact of malicious UWPs,
PLC vendors should consider sandboxing untrusted front-end code
to an isolated origin (e.g., Facebook’s fbsbx.com [19]). A detailed
explanation of how this potential mitigation strategy can be adapted
to the ICS domain is presented in Section 5.3.

UWPs can be downloaded to PLCs via proprietary ICS pro-
tocols (e.g., CIP PCCC for Allen Bradley [43] and ISO-TSAP for
Siemens [50]) or via non-ICS download methods (e.g., FTP for
GE [23] or SD card for Mitsubishi [4]). Furthermore, some vendors
allow a full project image, including any UWPs, to be downloaded
to the PLC over HTTP(s) via a “Restore from Backup” web API ex-
posed by the system website. The flexibility of download methods
gives an attacker multiple paths to planting a malicious UWP.

In lieu of personally downloading the malicious UWP, a bad
actor can also trick an authorized user into installing a trojan UWP,
as many UWPs are actually authored and sold by third-parties (e.g.,
Elmi Elettromeccanica [18]). The lack of web/front-end subject mat-
ter expertise by ICS operators combined with the misconception
about the impact of malicious UWPs makes this injection path par-
ticularly feasible. This point is a compelling argument for enforcing
domain sandboxing because without it, a UWP is equally as enticing
of a target for attackers as the system website is. Furthermore, PLC
vendors cannot guarantee the security of UWPs (as they are not
authoring them), so the only way to mitigate their compromise is
to isolate it from the administrative portion of the web application.

Hijacked PLC GUI Files. Instead of manually writing HTML
code, WAGO and Schneider customers can choose to use software
that generates web-based graphical user-interface (GUI) from a
high-level visual description [46, 63]. The most common exam-
ple of such software is the WebVisu application licensed from
CODESYS [12]. This software allows an operator to drag-and-drop



Push Malware

Malicious Link

Initial Infection Persistence Malicious Activities

Spoof HMI
Values

Control
Actuators

Cover Tracks

Delete Malware
Payloads

Clear Browser
Cache

Register Service
Workers

OK

C2 Channel 

PLC

Le
ve

l 0
Le

ve
l 1

Le
ve

l 2
Le

ve
l 3

EWS Remote HMI

Le
ve

l 4
/5

Office PCPrinter

Industrial N
etw

ork
B

usiness N
etw

ork

Public Internet

Actuator Sensor

Local HMI

Attacker

Replicate
Payload

resurrect.js

evil.com

malware.js

Figure 3: Lifecycle of WB PLC Malware

GUI elements to build an interface that gets transpiled into front-
end files (HTML, JavaScript, CSS). This software helps ICS operators
build rich, although less customized, HMI dashboards using pre-
build elements, without needing any web subject matter expertise.
If these files are hosted on the same embedded web server as the
system website (without any sandboxing considerations), they may
be a feasible infection mechanism for WB malware. In most cases,
simplymodifying the transpiled files in-transit during the download
process or overwriting them in the filesystem after download is all
that is needed to compromise the device. We verified this technique
by SSH’ing into a WAGO 750 PLC in our lab and overwriting the
transpiled front-end files.

ICS Cross-Channel Scripting. In addition to the two legitimate
channels for pushing front-end code to the PLC discussed above,
an attacker may also be able to exploit a Cross Channel Script-
ing (XCS) vulnerability to inject WB malware. XCS is an obscure
variant of Cross-Site Scripting (XSS) where the malicious payload
is transferred to the web server via a non-web protocol such as
SNMP or FTP [36]. We discovered that this vulnerability classifica-
tion is particularity common in the ICS domain because real-time
constraints force industrial equipment to utilize low-latency propri-
etary protocols. While investigating this project, we observed that
these protocols provide an effective method for sending malicious
JavaScript payloads to the embedded web servers inside PLCs. We
believe that XCS is an understudied vulnerability in the ICS domain
as the analysis by our team revealed multiple zero-day vulnerabili-
ties across several different vendors (e.g., CVE-2022-46670).

Discovering these injection bugs required manual effort with
custom-written clients because traditional IT-oriented scanning
tools (e.g., Burp Suite [42]) are unable to inspect the industrial proto-
cols that PLCs regularly utilize to accept user-input (e.g., CIP, Mod-
bus, Profibus, EIP, etc). Our research shows that PLCs are uniquely
difficult to protect from JavaScript injection because their web

servers often render user-input that was ingested from a plethora
of specialized non-web protocols. Configuring web vulnerability
scanners to interrogate ICS protocols may make for interesting
future work.

4.2.2 Initial Infection - Example Implementation. After approxi-
mately one week of testing, our team identified four zero-day vul-
nerabilities in WAGO 750’s latest firmware. These issues were dis-
closed to the vendor and fixed as CVE-2022-45137, CVE-2022-45138,
CVE-2022-45139, and CVE-2022-45140. The methodology and test-
ing procedures used to identify these issues are outside the scope
of this paper, however we believe that similar vulnerabilities can
be found in most PLC admin portal web applications. Next, we
created a malicious website that, when viewed by anybody within
levels 1-3 of PERA, exploited these vulnerabilities to automatically
plant Iron Spider in the homepage of the WAGO system website.
Our malicious website also used basic JavaScript resonance meth-
ods (e.g., websocket Favicon sweeping internal IP ranges [34]) to
automatically locate the WAGO PLC within the private industrial
network. Pseudocode for the malicious website is included below.

1 window.onload = function () {

2 sweepForLocalServers ().then((ips)=>{

3 filterToWagoPLCs(ip).then(( wagoIP)=>{

4 exploitWebBugs(wagoIP).then (()=>{

5 location.assign('//' + wagoIP);

6 });

7 });

8 });

9 };

Listing 1: JavaScript code to locate and attack the PLC

We emailed a link to this website to the EWS in our testbed and
manually opened it in the default web browser. Alternatively, an
attacker looking to indiscriminately launch the attack at-scale can
perform a watering hole attack [33] by simply purchasing an ad



banner on a popular PLC help forum. Note that the attacker did not
need any prior knowledge of the EWS hardware, operating system,
or web browser. After 3.7 seconds of viewing the webpage, Iron
Spider was successfully downloaded to the target PLC without any
user notification or firewall intervention. We emphasize that this
attack did not actually compromise the EWS, but rather simply used
it as a pivot point to gain network access to the PLC. None of the
typical EWS security measures such as anti-virus scans and patch
management were able to prevent this attack.

4.3 Persistence
The next stage of our framework is persistence. In this stage, the
malware will employ several techniques to hide its presence and
become resilient to typical removal methods.

4.3.1 Persistence - Framework. In our experiments, we found that
the exact steps needed to accomplish persistence will vary depend-
ing on the model of the infected PLC, however the following sec-
tions will provide insight into the most common strategies.

Resurrection Code in HMIs and EWSs. A shockingly effec-
tive strategy to achieve persistence in the ICS domain is to leverage
a web service worker to cache “resurrection code” in multiple web
browsers throughout the ICS network (levels 2 and 3 in the PERA
model). Service workers are a relatively new addition to the HTML5
specification that lets scripts run in the background, detached from
any single web page. This powerful feature of web browsers is used
to build rich offline experiences that include functionality such as
push notifications and background sync [22]. We propose that this
functionality be repurposed in the ICS domain to secure a foothold
in the segregated industrial network by caching secondary mal-
ware payloads throughout the ICS environment. These secondary
payloads will execute directly from EWS/HMI browser cache for
up to 24 hours [60] after the primary malware payload has been
completely removed from the PLC device. These service workers
can periodically check for such removal, and when detected, use
methods from the previous section to re-infect the device, as shown
in Figure 4.

In addition to re-infecting a factory-reset PLC, the proposed
strategy also allows the malware to infect any replacement PLC,
thus giving the malware the ability to survive even after the PLC
hardware has been completely rebuilt. This advanced “resurrection”
technique helps the WB malware withstand even the most strin-
gent eradication steps set by the Cybersecurity and Infrastructure
Security Agency’s (CISA) “Cybersecurity Incident & Vulnerability
Response Playbooks” (i.e., reimage PLC to “gold” source and re-
build PLC hardware) [15]. Note that this malicious utilization of
service workers is unique to the ICS domain because securing a
web-based foothold in a segregated private network is not needed
to communicate with a web server in the IT domain.

Self-Replication via Downgraded PLC Firmware. As dis-
cussed in Section 4.2, there are numerous infection mechanisms
for WB malware. This is especially true if the malware uses the
system website APIs to downgrade the firmware version to re-
introduce known security issues. The malware may utilize these
different infection mechanisms to provide redundancy (i.e., store
copies of itself in different sections of the PLC memory), which
enables the malware to survive intentional, or accidental, actions

PLC Web Browser-
Based HMI

Cache Service WorkerInitial Infection

PLC Hardware
Replacement

Deletes Malware
Payloads

GET /malware.js

Check Existence 

200 OK

GET /malware.js

Check Existence 

404 NOT FOUND

...
< 24 Hour Cache
Directive Limit

Reinfect Device

malware.js

malware.jsmalware.js

resurrect.js
resurrect.js

Figure 4: Service Worker used for WB malware re-infection

by the PLC operator that may delete the payload (e.g., updating con-
figuration settings or power-cycling the device). We experimentally
verified with Siemens S7-1200 that using web APIs to downgrade
the firmware version then exploiting known file upload vulnerabil-
ities was an effective method of self-replication in that PLC model.
Note that the technique discussed here is unique to the ICS domain,
as front-end code in the IT domain does not typically have the
ability to control versioning of server-side code.

4.3.2 Persistence - Example Implementation. Recall that Iron Spider
was installed on the homepage of the PLC’s system website in the
previous stage. In this stage, Iron Spider employed various strategies
to ensure continuous execution in the ICS environment. Firstly, Iron
Spider , utilized the same zero-day bugs from the Initial Infection
step to overwrite the transpiled PLC GUI files, thus spawning new
execution processes in both the local and remote HMIs. Next, Iron
Spider registered service workers in all three of the browsers render-
ing its payload (Microsoft Edge on EWS, Chromium on remote HMI,
WAGO microbrowser on local HMI). These service workers became
cached in the browsers and periodically checked for the existence
of the main malware payload. If/when the main payload was found
to be missing, the service worker used the same methods from the
first step to re-infect the device. We emphasize that this strategy
enables Iron Spider to survive PLC hardware replacement.

4.4 Malicious Activities
The impact of the WB malware can be measured by its ability to
sabotage real-world machinery, abuse PLC admin settings, and
exfiltrate data. Recall from Section 3 that traditional PLC malware
is trapped within segregated industrial network without an internet
connection and that CL malware runs in a user-code sandbox with
limited functionality. For these reasons, we claim that WB malware
is capable of performing more impactful malicious activities than



prior work. Table 4 compares the capabilities of each PLC malware
category.

Table 4: Malicious Capabilities per Malware Category

Web-Based Control Logic Firmware
Admin Settings ✓ ✓

Sabotage ✓ ✓ ✓

Exfiltration ✓

✓= Possible Malicious Activity

4.4.1 Malicious Activities - Framework. The malicious capabilities
of the malware are directly mapped to features of the system web-
site. All actions capable of being performed by a human using the
system website normally can be accomplished programmatically
by WB malware (e.g., virtually “click” buttons, virtually “type” into
forms, and utilize all legitimate HTTP APIs). Therefore the impact
of WB malware will depend on which PLC model has been infected.
The following sections contain the general approach that can be
applied to most models.

SabotageMachinery for Physical Damage.A key component
of any PLC malware is its ability to influence real-world physical
events. Our proposed WB malware is capable of performing such
control by utilizing the legitimate system website APIs to sabotage
the industrial processes. BecauseWBmalware executes on the same
web origin as the PLC’s system website, it can leverage the ambient
browser credentials (e.g., cookies) needed to interact with authenti-
cated web APIs. This can be done directly via JavaScript-initiated
network requests (e.g., fetch() or XMLHttpRequest) or indirectly
via JavaScript-initiated simulated user input (e.g., virtually “click-
ing” buttons in the UI). The specific steps needed to sabotage the
real-world machinery will depend on the functionality provided
by the vendor of the infected PLC. Some PLCs, such as the Allen
Bradley MicroLogix 1400, expose web APIs to directly modify I/O
values by overwriting the data stored in CPU memory addresses
via the “Editable Data Table Memory Map” (even when the data
itself is not tied to an HMI-controlled variable [3]). Other PLCs,
such as the Schneider TM241, expose web APIs to overwrite control
logic variables with arbitrary data [46]. Furthermore, some PLCs,
such as Siemens S7-1200, even expose APIs to have the entire PLC
project overwritten via the “Restore from Backup” functionality [55].
This backup can contain new set points, user configuration, and
safety settings. A bad actor can abuse these powerful web APIs to
maliciously control actuators and cause catastrophic damage to the
underlying physical processes. Note that modifying control logic
variable values via web-based APIs does not actually change the
compiled control logic binary and will therefore not trigger any
attestation systems such as PLCDefender [45], further illustrating
how this attack is materially different than CL malware.

Due to the intentional human-readability of web-based HMIs,
little-to-no prerequisite information regarding the underlying phys-
ical domain (level 0) is needed to launch a successful sabotage
attack. An adversary can deduce unsafe states by visually inspect-
ing screenshots of the HMI UI (exfiltrated using the techniques
discussed later in this section) and modifying the controls accord-
ingly (e.g. virtually “turn the knob” to change motor speed set

points). This type of casual control is not possible using traditional
(CL or FW) PLC malware, which requires intimate knowledge of
I/O pin layout configuration and downstream actuator settings.
Thus, physical sabotage via WB malware requires significantly less
reverse engineering effort and prerequisite intelligence compared
to existing strategies.

In addition to compromising the PLC actuators, WBmalware can
also sabotage industrial processes by spoofing values displayed in
the system website and web-based HMIs. This can be accomplished
by simply modifying the DOM of the displayed webpage using the
standard JavaScript interface (e.g., document.body.innerHTML) or
by overlaying fabricated displays (e.g., adding a screenshot to a
top layer full-page img tag). For example, stealthy WB malware
may record sensor values in browser storage (e.g. local storage [66])
and display them later during the actuator compromise to hide the
attack.

Abuse Admin Settings for Further Compromise. Another
malicious action that the WB malware can perform is to modify the
administrative PLC configuring via the web-based APIs exposed
by the system website. These APIs allow an operator to control
admin settings on the device through a feature called “Web-Based-
Management (WBM)” [54] [62]. An adversary can abuse these APIs
to aid in future attacks or enable further compromise of the de-
vice. The specific settings available for modification depend on the
PLC vendor and firmware version, however a typical attack may
include editing the on-device firewall, creating new users, and en-
abling/disabling certain network services. We emphasize that this
type of control is not possible with CL malware due to the user-
code sandbox and is extraordinarily difficult with FW malware due
to the tedious nature of binary instrumentation in a real-time em-
bedded device (and is sometimes not possible at all depending on
the chipset isolation in the motherboard [21]). With WB malware,
this control is easily accomplished by simply calling the legitimate
HTTP APIs with JavaScript. Note that our malicious JavaScript
code leverages the same authentication mechanism as the user ren-
dering its payload, which in the case of the EWS, will likely be the
cookies belonging to the PLC system administrator because the
primary purpose of the EWS is to perform administrative device
configuration [14]. Table 5 lists common WBM admin settings and
example consequences of their malicious misuse.

Data Exfiltration for Industrial Espionage. As mentioned in
Section 2, the unique execution characteristics of our proposed mal-
ware allows it to utilize a public Internet connection even when the
PLC itself is located in an isolated private network. Web browsers
in which the malware executes (e.g., Microsoft Edge on an EWS
and/or Chromium-based Microbrowsers in remote HMIs) are typi-
cally simultaneously connected to both the target PLC network and
other less-critical networks [11]. For example, EWSs are usually
connected to both the level 2 network (to communicate with the
PLC) and the level 3 network (to perform online tasks like send-
ing emails and viewing forum websites to troubleshoot devices,
e.g., http://support.industry.siemens.com [53]). This simultaneous
connectivity can be accomplished using a variety of networking
setups common in large ICSs such as dual NICs, VLAN tagging, and
firewall-managed enclaves. The perimeter of these networks are
often secured using domain-specific firewalls that attempt to block
abnormal traffic [11]. Our WB malware can bypass this scrutiny by



only utilizing protocols allowed in level 3 traffic, such as DNS or
HTTPS, when communicating to the C2 server and only using the
legitimate PLC APIs when communicating to the PLC.

Performing this exfiltration using WB malware does not require
any intimate familiarity with the target PLC or the underlying phys-
ical process. Generic, but powerful, web-based exfiltration strate-
gies such as canvas screenshots, event-listener keylogging, and
full DOM dumps can be applied to virtually all PLC models across
every vendor. These techniques allow WB malware to intercept
sensitive ICS information such as physical process characteristics,
plaintext usernames and passwords, and plant configuration details.
This stolen data can be covertly exfiltrated using front-end network
requests such as JavaScript fetch() and URI parameters to an HTML
img tag src. Browser-based exfiltration strategies like this are no-
toriously difficult to detect or prevent using firewalls [10] because
benign web applications often communicate with a variety of third
party servers via encrypted protocols [44] (e.g., HTTPS and WSS),
which commonly causes nefarious browser-based connections to
go unnoticed, especially if the C2 infrastructure is built on top of
a reputable third party web service such as Google Analytics or
Facebook pixels [38]. Note that the C2 stream will be completely un-
affected by any on-device PLC firewalls because the PLC-to-browser
communication is utilizing the legitimate APIs provided by the PLC
vendor. We emphasize that neither CL nor FW PLC malware can
perform real-time data exfiltration in-practice because they typi-
cally execute in segregated industrial networks and cannot utilize
a public internet connection.

Table 5: Consequences of Misusing WBM Admin APIs

Admin Setting Example Misuse

On-Device Firewall Modify EWS MAC Address whitelist to allow
rogue connections to arbitrary hosts.

User Management Create new “backdoor” user to ensure continuous
control.

Network
Configuration

Modify IP address to circumvent downstream
firewall routing rules.

Network Services Disable SNMP to prevent network operators from
noticing IP reconfiguration.

Image Backup
Create and exfiltrate a full project backup,

including current CL programs, device metadata,
and historical logfiles to aid in espionage.

Security Settings Disable IPsec, OpenVPN, and TLS to let other
devices to MiTM PLC traffic.

4.4.2 Malicious Activities - Implementation Example. The goal of
Iron Spider was to perform a Stuxnet-style attack using web tech-
nologies that circumvent modern defenses. To prepare for the at-
tack, a real-time websocket C2 channel was established by all three
execution environments. While only the EWS and remote HMI
had direct internet access, the local HMI process was still able to
achieve C2 communications by using a covert channel within the
PLC device as a proxy. During the attack, Iron Spider modified the
web-based HMIs’ DOMs to display falsified sensor values (recorded
the previous day and saved in browser local storage). Next, the
malware virtually interacted with the HMI’s UI to covertly change
the set-point for the motor’s speed control. Our testbed used an

emergency light to indicate that a critical failure occurred (i.e., the
attack was successful and it is too late to intervene). Approximately
7.4 seconds after the attack began, the emergency system tripped
indicating that the centrifuge was damaged. The HMIs displayed
fake readings throughout the entire attack.

4.5 Cover Tracks
The final stage of the framework is to remove any traces of the
infection. This stage is aimed to impede incident response and
forensics postmortem efforts. We emphasize that this self-contained
removal strategy is not possible using CL malware due to the user-
code sandbox in which it executes.

4.5.1 Cover Tracks - Framework. The following section contains
the general approach to removing the payload and resetting the
device.

Delete PLC Malware Payload. Once the malicious activities
have been accomplished and the malware is no longer needed, it
should attempt to remove the payload from PLC storage. The exact
removal techniques will depend on how the payload was initially
implanted onto the device (see Section 4.2), however in general, the
process will involve repeating stage 1 using a blank, or otherwise
benign, payload to overwrite the malware file. Additionally, the
malware will need to invalidate any resurrection code by unreg-
istering the service workers using the exposed HTML5 browser
APIs.

Restore from PLC Backup Image. Even after the payload has
been removed from PLC storage, traces of its existence may still
reside in access logs and/or obscure memory caches. To finish the
removal process, WB PLC malware may use the legitimate system
website APIs to restore the PLC program from a prior backup image.
Doing this will overwrite the set points, reset all configurations,
and flush all caches. This drastic step gives the malware full control
of the current PLC image, which is likely where forensics teams
will begin their investigation. This type of absolute control over
raw server-side memory states is unique to the ICS domain and
allows WB PLC malware to self-destruct in a much more complete
manner than malicious JavaScript in the IT domain.

4.5.2 Cover Tracks - Implementation Example. After Iron Spider’s
successful attack, it began the process of cleansing the PLC of any
traces of the infection. This was a non-trivial exercise because our
zero-day vulnerabilities (CVE-2022-45137, CVE-2022-45138, CVE-
2022-45139, and CVE-2022-45140) planted the malware payload in a
section of the PLC’s filesystem that was unaffected by factory resets.
Iron Spider’s first step in covering its tracks was to re-use these
vulnerabilities to overwrite both the system website homepage and
compiled GUI files back to their original content. Then, the malware
(while still executing on any open tabs) unregistered the service
workers and flushed browser cache. Lastly, the malware refreshed
all pages, thus killing all execution processes.

5 EVALUATION
As demonstrated in the previous section, Iron Spider , is capable of
sabotaging industrial processes using a radically different approach
than the ones used by existing PLC malware. Our malware can ex-
filtrate sensitive data, spoof HMI displays, maliciously control PLC



actuators, and self-destruct all without system-level compromise.
Furthermore, Iron Spider , does not need to hijack any peripheral
systems such as EWS or Engineering Software library dependencies.
Recall that implementation details for Iron Spider were included
in each subsection of Section 4. This section provides an analysis
of the experimental results obtained from running Iron Spider in a
real-world ICS testbed to perform a Stuxnet-style attack using web
technologies that circumvent modern defenses. This section also
discusses the efficacy of existing and proposed countermeasures.

5.1 Experimental Setup
The previous section explained how Iron Spider implemented each
stage of our WB PLC malware framework in a real-world ICS
testbed constructed to precisely spin a three-phase 220VAC in-
dustrial motor. This scenario was inspired by the real-world con-
figuration for controlling uranium enrichment centrifuges during
the Stuxnet attack [69]. This subsection outlines the key hardware
components and networking details that comprised our testbed.

Networking Details.We developed a real-world ICS network
environment by segregating the industrial network from the busi-
ness network, as shown in Figure 2. The industrial network con-
sisted of a WAGO 750 PLC, a WAGO eDisplay! 7300 local HMI, and
a dedicated LAN port to connect to certain devices in the busi-
ness network. Firewall rules only permitted legitimate PLC traffic
to traverse the industrial network and the WAN port was sealed
to prevent direct routable access to other networks. The business
network consisted of a Raspberry-Pi remote HMI and a Microsoft
Windows EWS. The business network was connected to the public
Internet through a firewall that only allowed standard office traffic.
The remote HMI and EWSwere dual-homed to enable simultaneous
access to both the business and industrial networks. We emphasize
that while we chose to use dual-homing for its simplicity, any net-
work configuration where EWS can simultaneously access both the
public web and the private PLCs (a typical setup in practice [11])
would suffice for this attack.

PLC Configuration. The WAGO 750 PLC controlled a Dayton
11W366 industrial motor with a 0-10v analog signal to a Schneider
ATV12 Variable Frequency Drive. The PLC also read the actual rotor
speed using a Compact Instruments Tachoprobe A2108 tachometer,
which outputted a 0-6V analog signal. A web-based HMI was de-
veloped using WAGO’sWebVisu integration that allowed operators
to both view the tachometer readings and change the setpoint for
the motor speed. This HMI was displayed in theWAGO eDisplay!
7300 Microbrowser local HMI and in Chrome on the remote HMI.

Failure Indication. Lastly, an emergency light was configured
to trip if the tachometer read values over a certain threshold. This
system was designed to indicate that a critical failure has occurred,
similar to a standard smoke detector.

5.2 Execution & Results
Iron Spider performed Stuxnet-style sabotage by orchestrating an
end-to-end attack where the EWS, HMIs, and PLC all worked to-
gether to covertly set the motor speed setpoint to a dangerous level.
This subsection summarizes the data flow during the attack and
analyzes the outcome from the sabotage.

Attacker Remote HMIEng. WS Local HMI PLC Motor

JavaScript
Malware

Malicious
Website

Render
Payload

1 2

3

Exfiltrate
Screenshots

4

Attack
Signal

5 Attack Signal
(relayed)

5

Spoof HMI

6
Spoof HMI

6
Spoof Admin

Portal

6

Public
Internet

Business
Network

Industrial
Network

Legend

Corrupt Actuator Attack Coordination

54

ICS Sabotage 

6 7

Infection Process

1 32

Running Malware
Payload

Hosting Malware
Payload

Dangerous
Speed

7

Figure 5: Overview of Iron Spider’s Data Flow

Execution. During this attack, Iron Spider , covertly interacted
with several components of the ICS environment. The EWS was
used as a pivot point to gain entry into the industrial network
through JavaScript-initiated network requests by the malicious
website. The PLC was used to host the malware payload, relay C2
messages to the segregated local HMI, and physically interact with
the sensors/actuators. Both the HMIs and the EWS were used to
execute the malware payload in their respective browsers. And
of course, the motor was used to sabotage the industrial process.
Figure 5 illustrates the high-level data flow that occurred during
this attack. We emphasize that neither CL nor FW malware alone
could perform data exfiltration in our testbed due to the realistic
network segregation controls.

Results. Stuxnet sabotaged Iranian nuclear facilities by mod-
ifying the analog output signal to variable-frequency drives that
controlled uranium enrichment centrifuges [69]. A direct result
from this sabotage was the physical destruction of over 1,000 cen-
trifuges and a 30% reduction in operational capacity at the facilities
[6]. Our prototype malware, Iron Spider , was able to achieve a fun-
damentally similar attack (covertly altering the rotor speed of an
industrial motor) using a radically different approach.

Stuxnet attacked PLCs via CL malware that it deployed via com-
promised EWS (these EWS were compromised using a Microsoft
Windows worm and Trojan Step7 DLLs [29]). Iron Spider , however,
used WB malware that it deployed using a malicious website with-
out needing to compromise any peripheral systems. While both



Table 6: Proposed Countermeasures to Defend Against PLC WB Malware

Prevention Strategy Protections Provided Responsible Party Practicality
Private Network Access Increase difficulty ofWeb Access infections Browser developers Medium; may disrupt some legitimate traffic

CSP Confidentiality Directive Increase difficulty of web-based C2 channel Browser developers and
PLC vendors

High; minor server-side configuration for PLC
vendors

ICS Domain-Sandboxing Increase difficulty of Network Access infections
such as malicious UWP and hijacked GUIs PLC vendors Medium; Requires separate auth scheme and

server-side reconfiguration

Real-Only CDN w/ CSP and SRI Increase difficulty of all infections mechanisms PLC vendors Low; Requires substantial front-end restructure
and CDN management

PLC-configured WAF Increase difficulty of Network Access infections
such as ICS XCS Third-parties Medium; may add some overhead to real-time

ICS protocols

attacks achieved the same outcome (sabotaged motor), Iron Spider’s
approach has all of the advantages discussed in Section 3.

Figure 6 shows the true tachometer reading during the Iron Spi-
der attack. Recall that a spoofed tachometer reading, with incorrect
values, was visibly shown on the HMIs while the attack took place.
As displayed in this figure, shortly after the attack began, the in-
dustrial motor from the testbed started spinning at a speed above
the critical safety threshold2.

Figure 6: Tachometer Readings During the Iron Spider Attack

5.3 Countermeasures
Existing Countermeasures. The unique strategy employed by
Iron Spider (i.e., circumventing the need for system-level compro-
mise by targeting the web application hosted by the embedded
web server) allowed it to bypass virtually all modern ICS protec-
tions, both ones actively used by industry and proposed coun-
termeasures in recent academic papers. This includes defences
such as ICS-configured firewalls, PLC intrusion prevention sys-
tems (e.g., Reditus [41]), PLC control logic attestation systems (e.g.,
PLCDefender [45]), and PLC control logic formal verification (e.g.,
TSV [37]). Table AI in the Appendix lists modern countermeasures
and a brief explanation of their ineffectiveness. Generally speaking,
most countermeasures today focus on protecting the control logic
and firmware portions of PLC computation, which are unmodified
during our attack.

Proposed Countermeasures.We are now faced with a bleak
reality - there is no silver bullet for fully preventing WB PLC mal-
ware attacks. That being said, this emerging threat can be partly
mitigated using a combination of protections implemented by web
browser developers, PLC vendors, and third-party ICS products.

2As a safety precaution, we set the threshold of our testbed motor to a modest speed
that did not actually cause any physical damage.

These protections can serve as layers for a defence-in-depth strategy
to reduce the likelihood and impact of an attack. Table 6 lists the pro-
posed countermeasures, the protections provided by each defense,
and the practicality of deploying them in real-world ICSs. Notable
W3C-draft/proposed browser improvements include “Private Net-
work Access” and the “Content-Security-Policy (CSP) Confidentiality
Directive.” Potential protections by PLC vendor include utilizing a
read-only CDN used in conjunction with the CSP src-script Directive
and Subresource Integrity (SRI) as well as domain-sandboxing for
untrusted JavaScript code (i.e., isolating customer-authored UWPs
and GUIs from the system website). Unfortunately, the domain-
sandboxing techniques used in the IT domain are not directly usable
in the ICS domain, as ICS environments typically use IP addresses
instead of domain names to access servers. A slightly different ap-
proach to domain sandboxing that is more practical in industrial
environments is to either use a different port of the same IP ad-
dress or to utilize the CSP sandbox directive to virtually render
untrusted content on an isolated opaque origin. Finally, a potential
protection that does not rely on browser or PLC vendors could be
a PLC-configured Web App Firewall (WAF) (i.e., a WAF configured
to inspect non-web PLC protocols such as SNMP, Modbus, and
CIP). We verified the efficacy of these protections using a series of
simulations in Section Appendix I.1 of the Appendix.

6 CONCLUSION
Contrary to popular belief, firmware and control logic are not the
only levels of PLCs computation. Modern PLCs also utilize an em-
bedded web server that has become increasingly more powerful
over the past 10 years. So powerful, in fact, that hijacking it using
web-based malware proves to be more fruitful for attackers than
hijacking its firmware or control logic. We believe that WB PLC
malware is an emerging threat to ICS environments and will have
devastating real-world consequences if not adequately defended
against. We demonstrated with Iron Spider that a Stuxnet-style at-
tack is not only possible despite modern defences, but is actually
easier to perform today than it was back in 2005 when the actual
malware was developed. Web applications are now deeply inte-
grated into the modern ICS landscape, with embedded web servers
talking directly to embedded web browsers, and this trend is only
expected to increase over time. Appropriate precautions should be
taken to ensure that WB PLC does not undermine all other ICS
defences.



REFERENCES
[1] . [n.d.]. Five Myths of industrial control systems security. https://media.

kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf
[2] . [n.d.]. Industrial Control Systems (ICS) Security Market by Solution (Firewall,

Antimalware/Antivirus, IAM, Encryption, Whitelisting, Security Configuration
Management, DDoS, and IDS/IPS), Service, Security Type, Vertical, and Region -
Global Forecast to 2023. https://www.marketsandmarkets.com/Market-Reports/
industrial-control-systems-security-ics-market-1273.html

[3] [n.d.]. MicroLogix 1400 Embedded Web Server. https://literature.
rockwellautomation.com/idc/groups/literature/documents/um/1766-um002_-
en-p.pdf

[4] [n.d.]. Web Server Function Application Guide. https://dl.mitsubishielectric.co.
jp/dl/fa/document/catalog/plcf/l08643/l08643-a.pdf

[5] Arizton Advisory and Intelligence. [n.d.]. PLC Market - Global Outlook and Fore-
cast 2020-2025. https://www.arizton.com/market-reports/plc-market-analysis

[6] David Albright, Paul Brannan, and Christina Walrond. 2010. Did Stuxnet take
out 1,000 centrifuges at the Natanz enrichment plant? Institute for Science and
International Security.

[7] Aplitude. [n.d.]. 2022 App vs. Website Trend Report. https://amplitude.com/2022-
app-vs-website-report#key-takeaways

[8] Rockwell Automation. [n.d.]. MicroLogix 1400 Embedded Web Server.
https://literature.rockwellautomation.com/idc/groups/literature/documents/
um/1766-um002_-en-p.pdf

[9] Martín Barrère, Chris Hankin, Demetrios G Eliades, Nicolas Nicolau, and Thomas
Parisini. 2019. Assessing cyber-physical security in industrial control systems.
arXiv preprint arXiv:1911.09404 (2019), 1–10.

[10] Kenton Born. 2010. Browser-based covert data exfiltration. arXiv preprint
arXiv:1004.4357 (2010).

[11] Centre for the Protection of National Infrastructure. [n.d.]. Firewall Deployment
for SCADA and Process Control Systems. https://www.energy.gov/sites/prod/
files/Good%20Practices%20Guide%20for%20Firewall%20Deployment.pdf

[12] Codesys. [n.d.]. CODESYS WEBVISU. https://www.codesys.com/products/
codesys-visualization/webvisu.html

[13] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2016. Automated
dynamic firmware analysis at scale: a case study on embedded web interfaces. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communications
Security. 437–448.

[14] Cybersecurity and Infrastructure Security Agency. [n.d.]. Control System En-
gineering Workstation. https://www.cisa.gov/uscert/ics/Control_System_
Engineering_Workstation-Definition.html

[15] Cybersecurity and Infrastructure Security Agency. [n.d.]. Cyber-
security Incident & Vulnerability Response Playbooks. https:
//www.cisa.gov/sites/default/files/publications/Federal_Government_
Cybersecurity_Incident_and_Vulnerability_Response_Playbooks_508C.pdf

[16] Defense Use Case. 2016. Analysis of the cyber attack on the Ukrainian power
grid. (2016), 1–29.

[17] Alessandro Di Pinto, Younes Dragoni, and Andrea Carcano. 2018. TRITON: The
first ICS cyber attack on safety instrument systems. In Proc. Black Hat USA. 1–26.

[18] Elmi Elettromeccanica. [n.d.]. PLC Siemens TIA Portal - Controller per turbine
eoliche - Automazione e robotica windmill. http://www.elmielettromeccanica.it

[19] Facebook. [n.d.]. Out of scope & false positive XSS. https://www.facebook.com/
whitehat/education/false-positives/

[20] Nicolas Falliere, Liam O Murchu, and Eric Chien. 2011. W32. Stuxnet dossier.
White paper, Symantec Corp., Security Response 5, 6 (2011), 29.

[21] Luis Garcia and Saman A Zonouz. 2017. Hey, My Malware Knows Physics!
Attacking PLCs with Physical Model Aware Rootkit.. In Network and Distributed
System Security (NDSS) Symp. 1–15.

[22] Matt Gaunt. [n.d.]. Service Workers: an Introduction. https://developers.google.
com/web/fundamentals/primers/service-workers

[23] GE. [n.d.]. PACSystems* RX7i & RX3i TCP/IP Ethernet Communications User
Manual. https://www.manualslib.com/manual/1258748/Ge-Rx3i.html?page=22

[24] Geoffrey K Gill and Chris F Kemerer. 1991. Cyclomatic complexity density and
software maintenance productivity. IEEE transactions on software engineering 17,
12 (1991), 1284–1288.

[25] Github Security Engineering. [n.d.]. GitHub’s post-CSP journey. https://github.
blog/2017-01-19-githubs-post-csp-journey/

[26] Google. [n.d.]. Content hosting for the modern web. https://security.googleblog.
com/2012/08/content-hosting-for-modern-web.html

[27] Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, and Elie Bursztein. 2011.
Toward secure embedded web interfaces. In 20th USENIX Security Symposium
(USENIX Security 11).

[28] Naman Govil, Anand Agrawal, and Nils Ole Tippenhauer. 2017. On ladder logic
bombs in industrial control systems. In Computer Security. 110–126.

[29] ICS Alert (ICS-ALERT-14-281-01E). [n.d.]. Ongoing Sophisticated Malware Cam-
paign Compromising ICS (Update E). https://us-cert.cisa.gov/ics/alerts/ICS-
ALERT-14-281-01B

[30] Tal Keren. [n.d.]. THE RACE TO NATIVE CODE EXECUTION IN PLCS. https://
claroty.com/2021/05/28/blog-research-race-to-native-code-execution-in-plcs/

[31] Rafiullah Khan, Peter Maynard, Kieran McLaughlin, David Laverty, and Sakir
Sezer. 2016. Threat analysis of blackenergy malware for synchrophasor based
real-time control and monitoring in smart grid. In 4th Int. Symp. ICS & SCADA
Cyber Security Research. 53–63.

[32] Eric D Knapp and Joel Thomas Langill. 2014. Industrial Network Security: Securing
critical infrastructure networks for smart grid, SCADA, and other industrial control
systems. Syngress.

[33] N Krithika. 2017. A study on wha (watering hole attack)–the most dangerous
threat to the organisation. Int. J. Innov. Sci. Eng. Res.(IJISER) 4 (2017), 196–198.

[34] Jorge Lajara. [n.d.]. JS-Recon detailed Analyzing the internal network with a
XSS. https://jlajara.gitlab.io/js-recon

[35] Ralph Langner. 2011. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security
& Privacy 9, 3 (2011), 49–51.

[36] R Madhusudhan et al. 2018. Cross Channel Scripting (XCS) Attacks in Web
Applications: Detection and Mitigation Approaches. In 2018 2nd Cyber Security
in Networking Conference (CSNet). IEEE, 1–3.

[37] Stephen E McLaughlin, Saman A Zonouz, Devin J Pohly, and Patrick D McDaniel.
2014. A Trusted Safety Verifier for Process Controller Code.. In NDSS, Vol. 14.

[38] MITRE. [n.d.]. Exfiltration Over Web Service. https://attack.mitre.org/
techniques/T1567/

[39] Mozilla Firefox. [n.d.]. Security/CSP/Confidentiality. https://wiki.mozilla.org/
Security/CSP/Confidentiality

[40] Alberto S Nuñez-Varela, Héctor G Pérez-Gonzalez, Francisco E Martínez-Perez,
and Carlos Soubervielle-Montalvo. 2017. Source code metrics: A systematic
mapping study. Journal of Systems and Software 128 (2017), 164–197.

[41] Syed Ali Qasim, Jared M Smith, and Irfan Ahmed. 2020. Control logic forensics
framework using built-in decompiler of engineering software in industrial control
systems. Forensic Science International: Digital Investigation 33 (2020), 301013.

[42] Sagar Rahalkar. 2021. Extending Burp Suite. In A Complete Guide to Burp Suite.
Springer, 131–145.

[43] Rockwell Automation. [n.d.]. Delivery of CIP Over RA Serial DF1
Links. https://www.rockwellautomation.com/content/dam/rockwell-
automation/sites/downloads/pdf/CIPandPCCC_v1_1.pdf

[44] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting
and Defending Against {Third-Party} Tracking on the Web. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12). 155–
168.

[45] Mohsen Salehi and Siavash Bayat-Sarmadi. 2021. PLCDefender: Improving
Remote Attestation Techniques for PLCs Using Physical Model. IEEE Internet of
Things Journal 8, 9 (2021), 7372–7379.

[46] Schneider. [n.d.]. How to configure Web Visualization in TM241 using Ecostrux-
ture Machine Expert? https://www.se.com/in/en/faqs/FAQ000191672/

[47] Schweitzer Engineering Laboratories Inc. [n.d.]. Interface HMI Touch-
screens to SEL Devices Using Modbus Protocols. https://cms-
cdn.selinc.com/assets/Literature/Publications/Application%20Notes/AN2013-
24-20130701.pdf?v=20211013-235342

[48] Schweitzer Engineering Laboratories Inc. [n.d.]. Web-based HMI: An emerging
trend? https://www.automation.com/en-us/articles/2003-1/web-based-hmi-an-
emerging-trend

[49] Shodan. [n.d.]. Shodan Search Engine. https://shodan.io/
[50] Siemens. [n.d.]. Basic Examples for Open User Communication: ISO-on-

TCP. https://cache.industry.siemens.com/dl/files/710/109747710/att_923140/v6/
109747710__IsoOnTcp_BaseComm_V1_en.pdf

[51] Siemens. [n.d.]. Creating Userdefined Web Pages on S7-1200 / S7-
1500. https://cache.industry.siemens.com/dl/files/496/68011496/att_917318/
v3/68011496_S7-1200_1500_Webserver_DOC_v22_en.pdf

[52] Siemens. [n.d.]. Firmware update for CPU 1214C, DC/DC/DC, 14DI/10DO/2AI.
https://support.industry.siemens.com/cs/document/107539750/firmware-
update-for-cpu-1214c-dc-dc-dc-14di-10do-2ai?dti=0&lc=en-US

[53] Siemens. [n.d.]. Industry Online Support. https://support.industry.siemens.com/
cs/start?lc=en-US

[54] Siemens. [n.d.]. SCALANCE XM-400/XR-500 Web Based Management
(WBM). https://cache.industry.siemens.com/dl/files/663/109798663/att_1070766/
v1/PH_SCALANCE-XM-400-XR-500-WBM_76.pdf

[55] Siemens. [n.d.]. Simatic Web Server. https://cache.industry.siemens.com/dl/files/
560/59193560/att_898124/v1/s71500_webserver_function_manual_en-US_en-
US.pdf

[56] Spider Control. [n.d.]. (Micro-) Browser Solution. https://spidercontrol.net/
spidercontrol-products/micro-browser-solution/?lang=en

[57] statista. [n.d.]. Global PLCmarket share as of 2017, bymanufacturer. https://www.
statista.com/statistics/897201/global-plc-market-share-by-manufacturer/

[58] Keith Stouffer, S Lightman, V Pillitteri, Marshall Abrams, and Adam Hahn. 2014.
NIST special publication 800-82, revision 2: Guide to industrial control systems
(ICS) security. National Institute of Standards and Technology (2014).

[59] Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. 2016. Data Exfiltra-
tion in the Face of CSP. In Proc. of the 11th ACM on Asia Conf. on Computer and

https://media.kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf
https://media.kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf
https://www.marketsandmarkets.com/Market-Reports/industrial-control-systems-security-ics-market-1273.html
https://www.marketsandmarkets.com/Market-Reports/industrial-control-systems-security-ics-market-1273.html
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/1766-um002_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/1766-um002_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/1766-um002_-en-p.pdf
https://dl.mitsubishielectric.co.jp/dl/fa/document/catalog/plcf/l08643/l08643-a.pdf
https://dl.mitsubishielectric.co.jp/dl/fa/document/catalog/plcf/l08643/l08643-a.pdf
https://www.arizton.com/market-reports/plc-market-analysis
https://amplitude.com/2022-app-vs-website-report#key-takeaways
https://amplitude.com/2022-app-vs-website-report#key-takeaways
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/1766-um002_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/um/1766-um002_-en-p.pdf
https://www.energy.gov/sites/prod/files/Good%20Practices%20Guide%20for%20Firewall%20Deployment.pdf
https://www.energy.gov/sites/prod/files/Good%20Practices%20Guide%20for%20Firewall%20Deployment.pdf
https://www.codesys.com/products/codesys-visualization/webvisu.html
https://www.codesys.com/products/codesys-visualization/webvisu.html
https://www.cisa.gov/uscert/ics/Control_System_Engineering_Workstation-Definition.html
https://www.cisa.gov/uscert/ics/Control_System_Engineering_Workstation-Definition.html
https://www.cisa.gov/sites/default/files/publications/Federal_Government_Cybersecurity_Incident_and_Vulnerability_Response_Playbooks_508C.pdf
https://www.cisa.gov/sites/default/files/publications/Federal_Government_Cybersecurity_Incident_and_Vulnerability_Response_Playbooks_508C.pdf
https://www.cisa.gov/sites/default/files/publications/Federal_Government_Cybersecurity_Incident_and_Vulnerability_Response_Playbooks_508C.pdf
http://www.elmielettromeccanica.it
https://www.facebook.com/whitehat/education/false-positives/
https://www.facebook.com/whitehat/education/false-positives/
https://developers.google.com/web/fundamentals/primers/service-workers
https://developers.google.com/web/fundamentals/primers/service-workers
https://www.manualslib.com/manual/1258748/Ge-Rx3i.html?page=22
https://github.blog/2017-01-19-githubs-post-csp-journey/
https://github.blog/2017-01-19-githubs-post-csp-journey/
https://security.googleblog.com/2012/08/content-hosting-for-modern-web.html
https://security.googleblog.com/2012/08/content-hosting-for-modern-web.html
https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-14-281-01B
https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-14-281-01B
https://claroty.com/2021/05/28/blog-research-race-to-native-code-execution-in-plcs/
https://claroty.com/2021/05/28/blog-research-race-to-native-code-execution-in-plcs/
https://jlajara.gitlab.io/js-recon
https://attack.mitre.org/techniques/T1567/
https://attack.mitre.org/techniques/T1567/
https://wiki.mozilla.org/Security/CSP/Confidentiality
https://wiki.mozilla.org/Security/CSP/Confidentiality
https://www.rockwellautomation.com/content/dam/rockwell-automation/sites/downloads/pdf/CIPandPCCC_v1_1.pdf
https://www.rockwellautomation.com/content/dam/rockwell-automation/sites/downloads/pdf/CIPandPCCC_v1_1.pdf
https://www.se.com/in/en/faqs/FAQ000191672/
https://cms-cdn.selinc.com/assets/Literature/Publications/Application%20Notes/AN2013-24-20130701.pdf?v=20211013-235342
https://cms-cdn.selinc.com/assets/Literature/Publications/Application%20Notes/AN2013-24-20130701.pdf?v=20211013-235342
https://cms-cdn.selinc.com/assets/Literature/Publications/Application%20Notes/AN2013-24-20130701.pdf?v=20211013-235342
https://www.automation.com/en-us/articles/2003-1/web-based-hmi-an-emerging-trend
https://www.automation.com/en-us/articles/2003-1/web-based-hmi-an-emerging-trend
https://shodan.io/
https://cache.industry.siemens.com/dl/files/710/109747710/att_923140/v6/109747710__IsoOnTcp_BaseComm_V1_en.pdf
https://cache.industry.siemens.com/dl/files/710/109747710/att_923140/v6/109747710__IsoOnTcp_BaseComm_V1_en.pdf
https://cache.industry.siemens.com/dl/files/496/68011496/att_917318/v3/68011496_S7-1200_1500_Webserver_DOC_v22_en.pdf
https://cache.industry.siemens.com/dl/files/496/68011496/att_917318/v3/68011496_S7-1200_1500_Webserver_DOC_v22_en.pdf
https://support.industry.siemens.com/cs/document/107539750/firmware-update-for-cpu-1214c-dc-dc-dc-14di-10do-2ai?dti=0&lc=en-US
https://support.industry.siemens.com/cs/document/107539750/firmware-update-for-cpu-1214c-dc-dc-dc-14di-10do-2ai?dti=0&lc=en-US
https://support.industry.siemens.com/cs/start?lc=en-US
https://support.industry.siemens.com/cs/start?lc=en-US
https://cache.industry.siemens.com/dl/files/663/109798663/att_1070766/v1/PH_SCALANCE-XM-400-XR-500-WBM_76.pdf
https://cache.industry.siemens.com/dl/files/663/109798663/att_1070766/v1/PH_SCALANCE-XM-400-XR-500-WBM_76.pdf
https://cache.industry.siemens.com/dl/files/560/59193560/att_898124/v1/s71500_webserver_function_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/560/59193560/att_898124/v1/s71500_webserver_function_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/560/59193560/att_898124/v1/s71500_webserver_function_manual_en-US_en-US.pdf
https://spidercontrol.net/spidercontrol-products/micro-browser-solution/?lang=en
https://spidercontrol.net/spidercontrol-products/micro-browser-solution/?lang=en
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/


Communications Security. 853–864.
[60] W3C. [n.d.]. Service Workers. https://www.w3.org/TR/service-workers/
[61] W3C Community Group. [n.d.]. Private Network Access. https://wicg.github.

io/private-network-access/
[62] WAGO. [n.d.]. PFC200 CONTROLLER. https://www.wago.com/us/pfc200
[63] WAGO. [n.d.]. WAGO WEBVISU APP. https://www.wago.com/us/software/

webvisu
[64] WAGO. 2022. WAGO PFC Firmware Releases. https://github.com/WAGO/pfc-

firmware/releases
[65] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016.

CSP is dead, long live CSP! On the insecurity of whitelists and the future of
content security policy. In Proc. ACM SIGSACConf. Computer and Communications
Security. 1376–1387.

[66] whatwg.org. [n.d.]. HTML Living Standard Web storage. https://html.spec.
whatwg.org/multipage/webstorage.html

[67] Timothy Williams. 1998. The Purdue enterprise reference architecture and
methodology (PERA). Handbook of life cycle engineering: concepts, models, and
technologies 289 (1998).

[68] Hyunguk Yoo, Sushma Kalle, Jared Smith, and Irfan Ahmed. 2019. Overshadow
PLC to detect remote control-logic injection attacks. In Int. Conf. Detection of
Intrusions and Malware, and Vulnerability Assessment. 109–132.

[69] Kim Zetter. [n.d.]. An Unprecedented Look at Stuxnet, the World’s First Digital
Weapon. https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

[70] Mu Zhang, Chien-Ying Chen, Bin-Chou Kao, Yassine Qamsane, Yuru Shao, Yikai
Lin, Elaine Shi, Sibin Mohan, Kira Barton, James Moyne, and Z. Morley Mao.
2019. Towards Automated Safety Vetting of PLC Code in Real-World Plants. In
IEEE Symp. Security and Privacy (S&P). 522–538.

Appendix I APPENDIX
Appendix I.1 Countermeasures Discussion
Browser Improvements. The first area of potential improvement
is limiting communication between the public Internet and private
Intranet. Providing this defence will greatly reduce the possibility
of a “Web Access” infection (see Section 3) because it would re-
strict public websites’ access to PLCs’ embedded webservers using
HTML and/or JavaScript network requests. In theory, this preven-
tion should cause many PLC web bugs such as rXSS and CSRF to
become mostly un-exploitable from malicious websites originat-
ing from the public web. Google Chrome engineers have already
proposed this countermeasure in the form of the “Private Network
Access” specification (previously known as CORS-RFC1918) [61],
however this defence has not yet been implemented in any major
browser. While a full adoption of this protection will definitely help
in mitigating web-based infections, it is unfortunately not a perfect
solution in all cases. Currently, the draft does not apply to local
HTML files (even when delivered via a malicious USB drive). This
draft also will not prevent an existing WB malware infection from
spreading to other PLCs because existing WB malware will already
have a private IP address, which is permitted to interact with other
private IP addresses according to the spec.

Another area of potential improvement for browsers is adding
built-in exfiltration defences. There are currently no browser mecha-
nisms that prevent rogue JavaScript code from covertly connecting
to, and exfiltrating sensitive data to, a third party remote server.
This lack of protection is what enables our proposed malware to es-
tablish a C2 channel with the public internet. While some websites
attempt to use Content-Security Policy (CSP) as a makeshift exfiltra-
tion defence [25], prior work has shown that this is an inadequate
protection because methods such as DNS resolution, subresource
prefetching, and navigation redirects easily defeat it [59]. In 2012,
Firefox developers proposed a new CSP directive called “Confiden-
tiality” [39] designed to fully eliminate exfiltration attacks, however
it was shelved shorty after creation due to reprioritization. We hope

that this paper will inspire browser developers to reevaluate that
decision.

ICS Protections. In addition to improving the web browsers in
which WB PLC malware executes, protecting the embedded web
server itself is also a reasonable mitigation strategy. As discussed
in Section 4.2, there are numerous techniques to infect a PLC with
WB malware, including XSS, malicious UWP, and hijacked GUIs.

Defending against XSS attacks has been a long-standing cat-and-
mouse game in the IT domain, with countermeasures constantly
being optimistically developed and woefully defeated [65]. Unfor-
tunately, no XSS defences have proven to be fully effective in all
scenarios. The most successful approach is a defence-in-depth strat-
egy where software development best practices such as contextually
aware input filtering and output encoding are utilized in tandem
with browser defences such as CSP and script attestation. Addition-
ally, network-based defences such as Web App Firewalls (WAFs)
can also be deployed as another layer of defense. Unfortunately, in
the ICS domain WAFs will only provide partial coverage because
XSS payloads can be transferred to PLCs using a plethora of non-
web protocols such as SNMP, Modbus, and CIP, which ultimately
get rendered in the system website. Configuring a WAF to inspect
non-web protocols commonly used by PLC network services could
make for interesting future work.

Lastly, all JavaScript code authored by the PLC customer (either
in UWPs or GUI files) should be fully isolated from the front end
properties authored by the PLC vendor. As mentioned in Section 4.2,
the IT domain has a well-established method for performing origin
isolation called “domain sandboxing.” Using this method, untrusted
front end files are hosted on a different web origin, usually with a
different domain name, than the main website. For example, Face-
book hosts customer-written code on fbsbx.com [19] and Google
hosts customer-written code on googleusercontent.com [26]. This
origin isolation prevents untrusted code from having access to the
ambient browser credentials associated with the main origin, which
are needed to access sensitive web APIs.

In ICS environments, where IP addresses are typically used in-
stead of DNS to access network devices, a sandboxing solution may
seem infeasible, however can still be accomplished using a slightly
different approach. Instead of using a different domain name, PLC
vendors can either host untrusted front end files on a different
port of the same IP address or utilize the CSP sandbox directive to
virtually render untrusted content on an isolated opaque origin.

Site-sandboxing is an effective strategy to prevent untrusted,
customer-authored, code from hosting full-fledged WB PLC mal-
ware because it will be unable to perform many of the malicious
actions outlined in Section 4.4.1 without access to the ambient
browser credentials used by the system website. Until all PLC ven-
dors natively add these protections, interesting future work could
be to retroactively add the CSP sandbox header to untrusted code
using an HTTP proxy via a bump in the wire.

https://www.w3.org/TR/service-workers/
https://wicg.github.io/private-network-access/
https://wicg.github.io/private-network-access/
https://www.wago.com/us/pfc200
https://www.wago.com/us/software/webvisu
https://www.wago.com/us/software/webvisu
https://github.com/WAGO/pfc-firmware/releases
https://github.com/WAGO/pfc-firmware/releases
https://html.spec.whatwg.org/multipage/webstorage.html
https://html.spec.whatwg.org/multipage/webstorage.html
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/


Prevention Strategy Effectiveness Explanation
Network Isolation ✗ Web traffic can use JS-based network requests to pivot into private networks
EW Antivirus Software ✗ Engineering Workstation was not compromised
EW Patch Management ✗ Engineering Workstation was not compromised
IT Firewall ✗ Exfiltration and C2 only used typical web protocols (DNS, HTTPS, WSS)
ICS Firewall ✗ PLC communication only used legitimate PLC APIs
Network-Based ICS IPS (e.g., Reditus [41] or Shade [68]) ✗ Control Logic was not altered
PLC Control Logic Attestation (e.g., PLCDefender [45]) ✗ Control Logic was not altered
PLC Control Logic Formal Verification (e.g., TSV [37]) ✗ Control Logic was not altered
PLC Control Logic Static/Dynamic Analysis (e.g., VETPLC [70]) ✗ Control Logic was not altered
PLC Firmware Attestation ✗ Firmware was not altered
PLC Patch Management ✗ Iron Spider exploited zero-day webapp bugs in latest firmware
PLC Password Protection ✗ Iron Spider uses ambient browser credentials (e.g., cookies) of infected web application
Protocol-Layer Encryption ✗ Iron Spider does not rely on MiTM (of ICS or IT protocols)

✓= Effective; ✗= Not Effective
Table AI: Existing ICS Countermeasures and their Effectiveness at Preventing Iron Spider


	Abstract
	1 Introduction
	2 Background

	3 Related Work & WB Advantages
	4 WB PLC Malware Stages
	4.1 Threat Model & Assumptions
	4.2 Initial Infection
	4.3 Persistence
	4.4 Malicious Activities
	4.5 Cover Tracks

	5 Evaluation
	5.1 Experimental Setup
	5.2 Execution & Results
	5.3 Countermeasures

	6 Conclusion
	References
	Appendix I Appendix
	Appendix I.1 Countermeasures Discussion


