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A2-CLM : Few-shot Malware Detection Based on Adversarial
Heterogeneous Graph Augmentation

Anonymous Author(s)

ABSTRACT

Malware attacks, especially “few-shot” malware, have profoundly
harmed the cyber ecosystem. Recently, malware detection models
based on graph neural networks have achieved remarkable suc-
cess. However, these efforts over-rely on sufficient labeled data
for model training and thus may be brittle in few-shot malware
detection because of the label scarcity. To this end, we propose a
self-supervised malware detection framework based on graph con-
trastive learning and adversarial augmentation, termed A2-CLM, to
address the challenge of few-shot malware detection. Particularly,
A2-CLM first depicts the malware execution context with a sensitiv-
ity heterogeneous graph by assessing the security semantic of each
behavior. Afterwards, A2-CLM designs multiple adversarial attacks
to generate more practical contrastive pairs, including the PGD
attack, attribute masking attack, meta-graph-guide sampling attack,
direct system calls attack, and obfuscation attack, which is benefi-
cial to strengthening the model’s effectiveness and robustness. To
alleviate the training workload of contrastive learning, we intro-
duce a momentum strategy to train the multiple graph encoders in
A2-CLM. Especially on 1-shot detection tasks, A2-CLM achieves
performance gains of up to 24.63% and 4.58% against supervised
and self-supervised detection methods, respectively.

CCS CONCEPTS

• Security and privacy→ Few-shot malware detection.

KEYWORDS
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1 INTRODUCTION

Driven by the advent of sophisticated attack vectors, the exponen-
tial increase of new malware seriously disturbs the health of the
network environment and degrades the user experience [11, 69].
According to a recent report [4], AV-TEST identified over 450,000
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Figure 1: (a) A normal malware instance; (b) An adversarial

malware instance using code obfuscation techniques.

new malware registrations daily, many of which are wild instances
of malware or new families that have not yet been seen, making it
difficult to collect and label analyzable samples [1]. As a result, ef-
fectively detecting malware, particularly newly emerging malware,
is critical in network security to protect users from future threats.

Deep learning exhibits a crucial role in malware detection, as
it can automatically learn the feature vectors from the malware
samples [9, 15]. Generally, these approaches can be roughly divided
into two scopes: feature-based and heterogeneous graph-based mal-
ware detection methods. Specifically, the feature-based detection
methods concentrate on extracting representative signature or be-
havior features, such as opcodes [17, 40, 64], permissions[3, 8], API
call sequences [11, 22, 38, 46, 66], and network traffic [35, 65]. How-
ever, these methods merely emphasize the isolated features of the
malware and ignore the contextual structural information of mal-
ware propagation. Thus, several studies have strove to capture the
interactive structure patterns for malware detection by leveraging
heterogeneous graphs [14, 29, 30, 49, 55]. These methods model
the various malware entities as a heterogeneous graph and em-
ploy graph neural networks (GNNs) to learn a more comprehensive
low-dimensional representation.

Despite the aforementioned deep learning-based detection meth-
ods recently showing the great potential in malware detection,
unfortunately, they are mostly plagued by two flaws. Firstly, the
existing deep learning-based detection methods severely rely on
training a proper model in a supervised end-to-end manner, where
a large number of task-specific labels are needed [48, 61]. How-
ever, the few-shot issue of malware detection tasks is significant,
where each class of the training set contains a limited number
of samples [45], which may disable the existing deep learning-
based methods. Secondly, the existing deep learning-based detec-
tion methods that emphasize grasping attack details of known
training samples often lead to poor generalization capabilities and
a lack of robustness [13, 67] against adversarial samples shown
in Figure 1(b). Actually, an experienced attacker always replaces
sophisticated malicious behavior (i.e., the malicious API operation
“CopyFile” in Figure 1(a)) with equivalent normal behavior (i.e., the
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Figure 2: Network schema and detection capability of A2-

CLM.

benign API operations (“NtOpenFile”, “NtReadFile”, “NtWriteFile”)
in Figure 1(b)) to evade detection, resulting in the existing detection
models being feeble for defending these advanced variant attacks.

To this end, malware detection models need to become more
robust in the face of unseen, even unlabeled, few-shot malware,
which leads to our innovations below.

In this paper, we present a self-supervised graph Contrastive
Learning few-shot Malware detection framework with Adversarial
heterogeneous graph Augmentation (i.e., A2-CLM) to achieve a
more robust and effective few-shot malware detection. Concretely,
A2-CLM first advocates a sensitivity heterogeneous graph to model
malware’s interactive behavior (Figure 2(a)) as the contrastive in-
stance (Figure 2(b)), whose key insight is that the pre-determined
sensitivity of run-time behavior can assist in accurate few-shot mal-
ware detection. Then, to manufacture more practical augmented
instances for few-shot malware detection, A2-CLM explores com-
prehensive adversarial augmentations such as attribute-level adver-
sarial attacks and structure-level adversarial attacks to simulate the
case of Figure 1(b), which provides input data with rich and reason-
able noise for the subsequent instance-based discriminator. Finally,
inspired by the soaring performance of contrastive learning in com-
puter vision [10, 20, 24] and natural language processing [12, 27, 60],
A2-CLM introduces self-supervised graph contrastive learning to
train the graph encoders to generate robust and powerful represen-
tations, which eventually achieve the ability of malware detection
with a small number of unlabeled samples (Figure 2(c)).

To conclude, the major contribution of this work can be summa-
rized as follows:

• We present a novel few-shot malware detection framework,
termed A2-CLM, to utilize adversarial heterogeneous graph
augmentation to contribute to self-supervised graph con-
trastive learning, which is capable of achieving more effec-
tive and robust malware detection since A2-CLM prevents
some cases, such as code obfuscation variants, from being
misclassified by the detection model.
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Figure 3: Meta-graphs of A2-CLM.

• We present a sensitivity heterogeneous graph to model mal-
ware instances that fully exploits the propagative structure
information as well as the security semantics of various ma-
licious interactive behaviors. A sensitivity grading method
that integrates statistics-based and clustering-based tech-
niques, in particular, assigns varying degrees of sensitivities
to each interactive behavior, which can aid in accurate few-
shot malware detection and improve the interpretability of
detection results.

• We design two-level adversarial attacks to generate more
practical contrastive pairs for few-shot malware, including
the PGD attack, attribute masking attack, meta-graph-guide
sampling attack, direct system calls attack, and obfuscation
attack, each of which imposes certain semantic or structural
priors and is beneficial to learning more robust representa-
tions.

• Finally, we extensively evaluate A2-CLM on diverse real-
world datasets. A2-CLM achieves significant performance
gains in accuracy and F1-score compared to state-of-the-art
baselines, especially in few-shot malware detection tasks,
where it can achieve at least 4.58% and 3.52% improvements
on the 1-shot task and 10-shot task, respectively.

2 PRELIMINARIES

Definition 1. Few-shot Learning (FSL) [57] Few-shot learn-
ing is a type of machine learning (specified by E, T, and P), where E
contains only a limited number of examples with supervised informa-
tion for the target T, usually less than 20.

Definition 2. SensitivityHeterogeneousGraph of Few-shot
Malware (SHGFM).A sensitivity heterogeneous graph𝐺 = (V, E, S)
of the few-shot malware with a node type mapping Ψ : V ↦→ T
and an edge type mapping 𝜓 : E ↦→ R. Let V be the set of nodes,
E ⊆ V × V be the set of relationships between nodes in V , and
S ∈ R𝑑×𝑓 is the sensitivity attribute matrix. Each node 𝑣𝑥 ∈ V
belongs to one particular malware entity type in the node type set
T : Ψ(𝑣𝑥 ) ∈ T , and each edge 𝑒𝑥 ∈ E belongs to a particular rela-
tionship type in the edge type set R : 𝜓 (𝑒𝑥 ) ∈ R, where |T | + |R| > 2.
The x-th row vector s𝑥 ∈ R𝑓 of the sensitivity attribute matrix denotes
the entity attribute feature that concatenates the sensitivity score of
node 𝑣𝑥 , where each sensitivity score belongs to {1, 2, 3} assesses the
degree of malice of the corresponding run-time behavior.
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Figure 4: Overview of A2-CLM. (a) Sensitivity Heterogeneous Graph Construction intends to model the sensitivity-graded

behavior of the target malware with a sensitivity heterogeneous graph𝐺𝑜 , which holds processes, APIs, files, networks, systems,

registries, memories, and their interactive relationships. (b) Adversarial Heterogeneous Graph Augmentation crafts more

challenging augmented instances𝐺𝑝 through two levels of adversarial augmentation, such as attribute-level adversarial attacks

and structure-level adversarial attacks. (c) Contrastive Learning-based Malware Detection authorizes multiple GAT encoders,

which can concurrently obtain the graph-level representations ℎ𝐺𝑜
, ℎ𝐺𝑝

, and ℎ𝐺𝑞
; then, the InfoNCE loss function is encouraged

to evaluate the correspondence between the original malware instance and its augmented instances for the ultimate detection.

Definition 3. Meta-graph [68]. A meta-graph M is a directed
acyclic graph with a single source node 𝑛𝑠 (i.e., with in-degree 0) and
a single target node 𝑛𝑡 (i.e., with out-degree 0), defined on a SHGFM
𝐺 = (V, E, S) with schema 𝑇𝐺 = (A,R), then a meta-graph can
be defined as M = (V𝑀 , E𝑀 , A𝑀 , R𝑀 , 𝑛𝑠 , 𝑛𝑡 ), where V𝑀 ∈ V ,
E𝑀 ∈ E are constrained by A𝑀 ∈ A and R𝑀 ∈ R, respectively.

Figure 3 shows eight types of meta-graphs, and different meta-
graphs express different semantic information.

3 METHODOLOGY

In this section, we first formalize the few-shot malware detec-
tion problem and then elucidate the details of A2-CLM (shown
in Figure 4), which includes three components: (1) sensitivity het-
erogeneous graph construction (Figure 4(a)); (2) adversarial het-
erogeneous graph augmentation (Figure 4(b)); and (3) contrastive
learning-based malware detection (Figure 4(c)).

3.1 Problem Statement

Few-shot Malware Detection. As the means of attack by hackers
become more and more sophisticated [1, 54], many new emerg-
ing malware attacks make it difficult to collect sufficient analy-
sis samples in the wild, resulting in the “few-shot problem” that
is critical in malware detection tasks. Additionally, the security
semantics implied by different run-time behaviors are valuable
for few-shot malware detection, which are missed by existing

studies. For example, in Figure 4(a), the behavior “Process 2036
created by Process 208 starts execution (i.e. (𝑃𝑟𝑜𝑐𝑒𝑠𝑠1, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠2,
BeCreated))” is normal, while the behavior “Process 2036 modi-
fies 𝐻𝑎𝑟𝑑𝑑𝑖𝑠𝑘𝑉𝑜𝑙𝑢𝑚𝑒1\𝑣𝑎𝑠𝑡𝑒𝑠𝑡\1.𝑢𝑠𝑟 (i.e. (𝑃𝑟𝑜𝑐𝑒𝑠𝑠1, 𝐹𝑖𝑙𝑒2, Write-
File))” is malicious. The observations above motivate us to use self-
supervised learning and malware fine-grained execution context to
improve few-shot malware detection.

Recently, contrastive learning has shown sweeping successes in
few-shot learning [56], which concentrates on leveraging the data’s
inherent co-occurrence relationships as self-supervision without
the task-specific labeled information. In this work, we develop a
graph contrastive learning few-shot malware detection framework
that uses adversarial augmentation to improve the model’s robust-
ness with adversarial perturbations in a self-supervised manner.

A2-CLM. Given the target malware’s executive behavior events
𝐷𝑜 = {𝑒1, · · · , 𝑒 |𝐷 | }, A2-CLM first grades each run-time behavior
with varying degrees of sensitivities calculated from the param-
eter information involved in each event by statistics-based and
clustering-based techniques. Then A2-CLM leverages a sensitivity
heterogeneous graph𝐺𝑜 to model the sensitivity-graded behavior
events 𝐷′

𝑜 . To craft more challenging contrastive pairs, A2-CLM
fully augments m positive instances G𝑜

𝑃
= (𝐺𝑜

𝑝.1, · · · , 𝐺
𝑜
𝑝.𝑚) with

two levels of adversarial attacks on the original 𝐺𝑜 and randomly
chooses n negative instances G𝑜

𝑄
= (𝐺𝑜

𝑞.1, · · · , 𝐺
𝑜
𝑞.𝑛) from the rest
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of the software types (e.g., benign, Trojan.Kazy, and so on). After-
wards, using encoders GAT𝑜 , GAT𝑝 , and GAT𝑞 , A2-CLM learns the
graph-level representations of 𝐺𝑜 , G𝑜𝑃 , and G𝑜

𝑄
. Finally, A2-CLM

utilizes the instance discriminators based on contrastive learning
to evaluate the agreement of each instance pair and outputs the
predicted malware type of the target few-shot malware 𝐺𝑜 .

Generally, the critical issues that A2-CML hankers for settling
are as follows:

Issue1: How to generate the fine-grained and robust instances for
few-shot malware detection tasks?

Issue2: How to create more proper and practical positive and nega-
tive contrastive instance for malware heterogeneous graphs?

Issue3: What are the discrimination rules of few-shot malware de-
tection?

3.2 Sensitivity Heterogeneous Graph

Construction

As shown in Figure 4(a), we collect the underlying executive be-
havior of malware in the KingKong system [44], which holds abun-
dant interactive relationships among heterogeneous malware ob-
jects (e.g., APIs, processes, networks, etc.). Hence, to address Issue1,
it is insightful to take advantage of the heterogeneous graph to
model various heterogeneous malware entities and relationships for
few-shot malware detection tasks. Unfortunately, the existing het-
erogeneous graph-based detectionmethods, such asMatchGNet [55],
MG-DVD [29], and so on, merely emphasize malware object type
and interactions among them; they ignore the security semantics
implicit in run-time behavioral parameters, which assist in identify-
ing malicious patterns and improve the interpretability of detection
results. To this end, A2-CLM is responsible for associating each
run-time behavior with crucial degrees of sensitivity by exploiting
the security semantics of specific parameters. Concretely, we pro-
pose a sensitivity grading method that integrates statistics-based
and clustering-based techniques to divide the entire behavior space
into three categories, such as benign (i.e., sensitivity of 1), sensi-
tive (i.e., sensitivity of 2), and malicious (i.e., sensitivity of 3), which
represent distinct security semantics.

3.2.1 Sensitivity Grading. Wefirst employ a statistics-basedmethod
to tackle the run-time behavior by estimating the distribution of
behavioral parameters in malicious software and benign software.
Concretely, we implement term frequency inverse document fre-
quency (TF-IDF) [19, 58] to assess the sensitivity of each behavior
event. Formally, the frequency can be expressed as:

𝑇𝐹𝑖 =
𝑛𝑖∑
𝑘 𝑛𝑘

, (1)

where 𝑛𝑖 is the number of occurrences of parameter i in events set
D, and

∑
𝑘 𝑛𝑘 is the sum of the occurrences of all parameters in the

events set D.
Let 𝑇𝐹𝑚 denote the frequency of a parameter in malicious soft-

ware, while 𝐷𝐹𝑚 refers to the frequency of the software containing
the parameter. 𝑇𝐷𝑚 equals 𝑇𝐹𝑚 × 𝐷𝐹𝑚 . Similarly, 𝑇𝐹𝑏 , 𝐷𝐹𝑏 , and
𝑇𝐷𝑏 denote the corresponding values in benign software. Thereby,
for a parameter, if it has a higher𝑇𝐷𝑚 but lower𝑇𝐷𝑏 , it may imply
malicious behavior with a high probability, while a parameter with
a lower 𝑇𝐷𝑚 and a higher 𝑇𝐷𝑏 is more likely to be benign.

Table 1: Example of Several Behavior Events And Assigned

Sensitivities in Virus:Win32/Shodi.I

Behavior Event Sensitivity

⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠2036, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠208, 𝐵𝑒𝐶𝑟𝑒𝑎𝑡𝑒𝑑 ⟩ 1
⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠2036, 𝑀𝑒𝑚𝑜𝑟𝑦, 𝐿𝑜𝑎𝑑𝐿𝑖𝑏𝑟𝑎𝑟𝑦⟩ 1

⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠2036, 𝐹𝑖𝑙𝑒, 𝑅𝑒𝑎𝑑𝐹𝑖𝑙𝑒 ⟩ 2
⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠2036, 𝑆𝑦𝑠𝑡𝑒𝑚,𝐶𝑟𝑒𝑎𝑡𝑒𝑀𝑢𝑡𝑒𝑥 ⟩ 2
⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠2036, 𝐹𝑖𝑙𝑒,𝑊 𝑟𝑖𝑡𝑒𝑃𝐸𝐹𝑖𝑙𝑒 ⟩ 3

⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠1928, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘,𝑄𝑢𝑒𝑟𝑦𝐷𝑁𝑆 ⟩ 3

For the behavior events uncovered by the statistics-based tech-
nique, we utilize a clustering-based technique to further evaluate
their sensitivity. Specifically, we make the involved parameters of
each behavior event compose a document (d), in which each param-
eter is a string. Therefore, we can formalize the parameter clustering
as short text clustering and utilize the powerful GSDMM [62] to
achieve the purpose. Finally, with the statistics-based and clustering-
based techniques, the entire malware behavior events space is cov-
ered, and they can be divided into K (i.e., K = 3) categories following
their run-time parameters, which completely correspond to the be-
nign, sensitive, and malicious three types in Table 1.

3.2.2 Sensitivity Heterogeneous Graph Construction. Given the
behavior events of the target malware after sensitivity grading,
A2-CLM extracts 7 types of malware objects (i.e., process, API,
file, system, registry, memory, and network), 8 types of interac-

tive relationships (i.e., 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑓 𝑜𝑟𝑘
−−−−→ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 , 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝑐𝑎𝑙𝑙−−−→ 𝐴𝑃𝐼 ,
𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝑎𝑐𝑐𝑒𝑠𝑠−−−−−→ 𝐹𝑖𝑙𝑒 , 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑜𝑝𝑒𝑛
−−−−→ 𝑆𝑦𝑠𝑡𝑒𝑚, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝑐𝑜𝑛𝑛𝑒𝑐𝑡−−−−−−−→
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 , 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝑟𝑒𝑎𝑑−−−−→ 𝑀𝑒𝑚𝑜𝑟𝑦, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑠𝑒𝑡−−−→ 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑦, and

𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑−−−−−−−−−→ 𝐹𝑖𝑙𝑒), and 3 types of sensitivity (i.e., benign,

sensitive, and malicious) from them, which can roundly character-
ize the attack patterns of few-shot malware. Then, starting with
the target process node Tar, we insert the event 𝑒𝑖 into SHGFM,
where 𝑒𝑖 .𝑁𝑒𝑖 ∈ V. Eventually, we obtain the fine-grained sensitivity
heterogeneous graph𝐺𝑜 of the target malware, which represents
as the adjacency matrix A𝑜 and sensitivity attribute matrix S𝑜 .

3.3 Adversarial Heterogeneous Graph

Augmentation

Clearly, the performance of contrastive learning is heavily depen-
dent on the design of positive and negative instance pairs, and
improper choice of data augmentation can degrade downstream per-
formance [23, 59]. Unfortunately, prior graph contrastive learning
efforts highlight the generation of trivial augmented instances for
homogeneous graph-structured data by randomly adding or delet-
ing nodes or edges [39, 59], which are not applicable to malware
heterogeneous graph instances due to neglecting the nonlinear de-
pendencies of various heterogeneous entities. Hence, to puzzle out
Issue2, we prefer to implement adversarial heterogeneous graph
augmentation to compensate for the limitation of the existing graph
contrastive learning by generating more challenging positive pairs
and effective negative pairs, which is beneficial to improving the
model’s robustness by investigating the adversarial attack derived
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Figure 5: Five types of adversarial heterogeneous graph augmentations. (a) PGD Attack; (b) Attribute Masking Attack; (c)

Meta-graph-guide Sampling Attack; (d) Direct System Calls Attack; (e) Obfuscation Attack.

from malware domain knowledge. Concretely, as shown in Figure 5,
we design five malware adversarial heterogeneous graph augmenta-
tions by modifying graph structure (i.e., structure-level adversarial
augmentation) and node attributes (i.e., attribute-level adversarial
augmentation), including the PGD attack, attribute masking attack,
meta-graph-guide sampling attack, direct system calls attack, and
obfuscation attack, which can be utilized to train a robust graph
contrastive learning model for few-shot malware detection.

3.3.1 PGD Attack. To perform the transformations on the sensitiv-
ity attribute matrix S, we first project the attributed features of all
nodes in SHGFM to a common space since nodes in SHGFM have
different types. Formally, for each node 𝑣𝑥 ∈ V with type 𝑇𝑥 ∈ T
and sensitivity attribute feature 𝑠𝑥 ∈ S, the projection function g(·)
is defined as follows:

𝑠′𝑥 = 𝑔(𝑠𝑥 ) = 𝑠𝑥𝑊𝑇𝑥 , (2)

where 𝑠′𝑥 is the transformed node sensitivity attribute feature, and
𝑊𝑇𝑥 is the projection weight matrix for node type 𝑇𝑥 (T = 7).

As shown in Figure 5(a), with the processed 𝑠′𝑥 , we apply the
project gradient descent (PGD) attack [32] to infuse perturbation 𝛿

into the node sensitivity attribute features of SHGFM. Concretely,
the attribute feature attacked by PGD can be denoted as

𝑠′𝑥 = 𝑠′𝑥 + 𝛿, (3)

where the perturbation 𝛿 can be optimized as follows:

𝛿 = 𝑎𝑟𝑔 𝑚𝑎𝑥 ∥𝛿 ′ ∥𝑛≤𝜖 L (𝜃, 𝑠′𝑥 + 𝛿 ′), (4)

where ∥ · ∥𝑛 denotes the 𝑙𝑛-norm distance metric, 𝜖 is the perturba-
tion budget, 𝜃 is the model parameters, and L is the contrastive loss
function. Finally, we obtain the first kind of augmented instance
𝐺𝑜
𝑝.1=(V , E, S + 𝛿) of the original few-shot malware instance 𝐺𝑜 .

3.3.2 Attribute Masking Attack. The attribute masking attack is
another attribute-level adversarial augmentation, as shown in Fig-
ure 5(b). Encouraged by the significant effect of node attribute

masking on homogeneous graphs [63], we extend it to heteroge-
neous graphs to generate more elegant positive instances for few-
shot malware by performing the transformation on the processed
sensitivity attribute matrix So. Formally, we have

H𝑚𝑎𝑠𝑘 (S′𝑜 ) = S𝑜 ∗ (1 − L𝑚) + V ∗ L𝑚, (5)

where ∗ is the element-wise multiplication; L𝑚 denotes the masking
location matrix, and V∼ N (𝜇, 𝜎2) denotes the masking Gaussian
noise. Ultimately, we obtain the second kind of augmented instance
𝐺𝑜
𝑝.2=(V , E, S′) of the original malware instance 𝐺𝑜 .

3.3.3 Meta-graph-guide Sampling Attack. An effective method to
generate augmented instances is sampling. Different from the sampling-
based data augmentation on homogeneous graphs (e.g., ego-net
sampling [63] or uniform sampling [59]), we design a tailored meta-
graph-guide sampling attack for heterogeneous graphs, which fol-
lows certain semantics to sample from the global heterogeneous
graph. Specifically, as illustrated in Figure 5(c), given the pre-defined
meta-graphM𝑖 and𝐺𝑜 , the meta-graph sampled neighborhood N(𝑖 )

is:

𝑁 (𝑖 ) = {𝑁𝑒𝑖 | (𝑁𝑒𝑖,𝑇𝑎𝑟 ) ∈ 𝑀𝑖 , (𝑇𝑎𝑟, 𝑁𝑒𝑖) ∈ 𝑀𝑖 }, (6)

where N(𝑖 ) contains all visited neighbor nodes Nei when the target
process node Tar walks along with meta-graph M𝑖 . Eventually, we
obtain the third kind of augmented instance𝐺𝑜

𝑝.3= (𝑁 (𝑖 ) , E (𝑖 ) , S(𝑖 ) )
of the original few-shot malware instance 𝐺𝑜 .

3.3.4 Direct System Calls Attack. To evade sandbox surveillance,
more and more malware uses direct system calls to evade API hooks.
In general, new malware variants generated by such methods do
not call the APIs inside ntdll.dll, so the sandboxes or monitors
fail to perceive the malicious activity [18]. To accomplish this, we
propose a direct system call attack to generate a practical aug-
mented instance for few-shot malware. Concretely, we remove
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some key APIs (e.g., NtAdjustPrivilegesToken, NtWriteVirtualMem-
ory, NtDeleteValueKey, and so on) from the original malware be-
havior events to perform a direct system call attack. In this way,
we obtain the fourth kind of augmented instance𝐺𝑜

𝑝.4 = (V −V𝑎𝑝𝑖 ,
E ⊆ (V −V𝑎𝑝𝑖 ) × (V −V𝑎𝑝𝑖 ), SV−V𝑎𝑝𝑖

) of the original few-shot
malware instance 𝐺𝑜 .

3.3.5 Obfuscation Attack. Another variant generation method is
obfuscation attack, which employs code obfuscation techniques to
conceal the original malicious behavior with semantically equiv-
alent but different behavior, thus automatically mistaking similar
malware samples within one family for samples from a different
family [6]. For example, the malicious API operation CopyFileEx
shown in Figure 5(e) can be replacedwith several benign or sensitive
API operations, including NtOpenFile, NtReadFile, and NtWriteFile.

Specifically, inspired by [34], we propose two obfuscation attacks
to generate practical augmented instances for few-shot malware:
(1) replace an API call sequence with its equivalent, and (2) insert
redundant data flow dependent API calls. In addition, our presented
obfuscation attacks can ensure that the graph editing distance [7]
between the original malware instance and the augmented instance
is as large as possible without affecting the semantics, which is more
conducive to promoting the performance of contrastive learning.

Formally, the distance between the original malware instance
𝐺𝑜 and the fifth kind of augmented instance 𝐺𝑜

𝑝.5 = (V + V𝑎𝑝𝑖 ,
E ⊆ (V +V𝑎𝑝𝑖 ) × (V +V𝑎𝑝𝑖 ), SV+V𝑎𝑝𝑖

) is defined as

𝑑 (𝐺𝑜 ,𝐺𝑜𝑝.5) = 1 −
|𝑚𝑐𝑠 (𝐺𝑜 ,𝐺𝑜𝑝.5) |
𝑚𝑎𝑥 ( |𝐺𝑜 |, |𝐺𝑜𝑝.5 |)

, (7)

where𝑚𝑐𝑠 (𝐺𝑜 ,𝐺𝑜𝑝.5) denotes the maximal common sub-graph of
𝐺𝑜 and 𝐺𝑜

𝑝.5. |𝐺𝑜 | and |𝐺𝑜
𝑝.5 | represent the number of nodes in 𝐺𝑜

and 𝐺𝑜
𝑝.5, respectively.

Ultimately, Figure 5 shows five types of augmented instances of
the original malware instance; A2-CLM combines each augmented
instance and the original instance into a positive pair, which takes
the form (𝐺𝑜 ,𝐺𝑜𝑝.𝑚). Moreover, A2-CLM randomly chooses the soft-
ware instance (e.g., benign software) from the rest of the software
types as the negative pair, which forms (𝐺𝑜 , 𝐺𝑜𝑞.𝑛).

3.4 Contrastive Learning-based Malware

Detection

A properly contrastive discriminator will act on multiple positive
and negative instances pairs, which detects few-shot malware by
gradually learning the “distinguishable” information of different in-
stance pairs in a self-supervised manner. Notably, to answer Issue3,
A2-CLM contrasts the graph-level representations of various in-
stance pairs. As shown in Figure 4(c), A2-CLM holds out to capture
the similarity between the original malware instance 𝐺𝑜 and the
adversarial augmented instance 𝐺𝑝 , simultaneously, capture the
dissimilarity between 𝐺𝑜 and the sampled negative instance 𝐺𝑞 .

Concretely, in this subsection, we first employ graph attention
networks (GATs)[51], a powerful graph neural network that has
been shown to be superior to GCN [26] and GraphSAGE [21], to
learn the graph-level representations of each pair of contrastive
instances. Formally, given the original malware instance 𝐺𝑜 , m
adversarial augmented positive instances set 𝐺𝑜

𝑃
, and n sampled

negative instances set 𝐺𝑜
𝑄
, we implement three graph encoders,

𝐺𝐴𝑇𝑜 ,𝐺𝐴𝑇𝑝 , and𝐺𝐴𝑇𝑞 , to generate the comprehensive representa-
tions of the contrastive instance pairs through the following steps:

1)Aggregate node-level representationh𝑇𝑎𝑟 :Wefirst acquire
the node-level representations h𝑇𝑎𝑟 of the target process node Tar
in 𝐺𝑜 by iteratively aggregating its own features with those of its
important neighbors. Formally, the attention weight 𝛼 (𝑖 )

𝑇𝑎𝑟,𝑁𝑒𝑖
of

the neighbor node Nei can be defined as:

𝛼
(𝑖 )
𝑇𝑎𝑟,𝑁𝑒𝑖

=
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑇 [𝑋𝑇𝑎𝑟 , 𝑋𝑁𝑒𝑖 ] + b) )∑

𝑁𝑒𝑖′∈𝑁 (𝑖 )
𝑇𝑎𝑟

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑇 [𝑋𝑇𝑎𝑟 , 𝑋𝑁𝑒𝑖 ] + b) )
, (8)

where 𝑋𝑇𝑎𝑟 and 𝑋𝑁𝑒𝑖 are the feature vectors of node Tar and Nei.
𝑁

(𝑖 )
𝑇𝑎𝑟

is the neighborhood of the process node Tar guided by meta-
graph𝑀𝑖 . Then, the k-th layer of the node-level aggregator is:

h(𝑖 ) (𝑘 )
𝑇𝑎𝑟

=𝑀𝐿𝑃 (𝑘 ) ((1+𝜖 (𝑘 ) )h(𝑖 ) (𝑘−1)
𝑇𝑎𝑟

+
∑︁

𝑁𝑒𝑖∈𝑁 (𝑖 )
𝑇𝑎𝑟

𝛼
(𝑖 )
𝑇𝑎𝑟,𝑁𝑒𝑖

h
(𝑖 ) (𝑘−1)
𝑁𝑒𝑖

),

(9)

where k ∈ {1, 2,. . . , K} denotes the index of the layer, h(𝑖 ) (𝑘−1)
𝑇𝑎𝑟

and h(𝑖 ) (𝑘−1)
𝑁𝑒𝑖

are the node-level representations of target process
node Tar and corresponding neighbor node Nei at the (k-1)-th layer,
respectively. 𝜖𝑘 is a trainable balance parameter. Hence, the full
node-level representation of Tar guided by meta-graph𝑀𝑖 is:

h(𝑖 )
𝑇𝑎𝑟

= 𝐶𝑂𝑁𝐶𝐴𝑇 ( [h(𝑖 ) (𝑘 )
𝑇𝑎𝑟

]𝐾
𝑘=1) . (10)

2) Aggregate graph-level representation h𝐺𝑜
: We then as-

pire to aggregate different node representations into graph em-
bedding space. Similarly, to evaluate the significance of different
meta-graphs, we insist on computing the meta-graph attention
weight 𝜃𝑖 of each M𝑖 and obtaining the comprehensive graph-level
representation h𝐺𝑜

of the target few-shot malware. Formally,

𝜃𝑖 =
𝑒𝑥𝑝 (𝜎 (b[W𝑏h

(𝑖 )
𝑇𝑎𝑟

∥W𝑏h
( 𝑗 )
𝑇𝑎𝑟

]))∑
𝑔∈ |𝑀 | 𝑒𝑥𝑝 (𝜎 (b[W𝑏h

(𝑖 )
𝑇𝑎𝑟

∥W𝑏h
(𝑔)
𝑇𝑎𝑟

]))
, (11)

h𝐺𝑜
=

|𝑀 |∑︁
𝑖=1

𝜃𝑖 × h
(𝑖 )
𝑇𝑎𝑟

, (12)

where i ≠ j ∈ {1,. . . , |M|}, and 𝜎 is the activation function. b is the
weight vector from the input layer to the hidden layer of the neural
network, andW𝑏 is the corresponding weight matrix.

Empirically, we implement a non-linear projection head [10] to
the graph-level representation h𝐺𝑜

before computing the pair-wise
similarity, which is calculated by:

z𝐺𝑜
= 𝑀𝐿𝑃 (h𝐺𝑜

) . (13)

Ultimately, we keep a mini-batch B𝑜 of n negative instances (𝐺𝑜𝑞.1,
· · · , 𝐺𝑜𝑞.𝑛) drawn at random from the rest of the software families
and a positive instance 𝐺𝑜𝑝 . From a dictionary look-up perspective,
we aim to identify the unique pair of positive instances (denoted by
(𝐺𝑜 , 𝐺𝑜𝑝 )) in B𝑜 , and the loss function InfoNCE [36] is defined as:

𝑙𝑜,𝑝 =
𝑒𝑥𝑝 (𝑠𝑖𝑚 (z𝐺𝑜 , z𝐺𝑜

𝑝
)/𝜏 )

𝑒𝑥𝑝 (𝑠𝑖𝑚 (z𝐺𝑜 , z𝐺𝑜
𝑝
)/𝜏 ) +

𝑛∑
𝑑=1

𝑒𝑥𝑝 (𝑠𝑖𝑚 (z𝐺𝑜 , z𝐺𝑜
𝑞.𝑑

)/𝜏 )
, (14)
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Algorithm 1 The Overall Procedure of A2-CLM
Input: A sensitivity heterogeneous graph of the target malware

instance𝑜 : 𝐺𝑜=(A𝑜 , S𝑜 ), Adversarial augmentations: H𝑃𝐺𝐷 ,
H𝑚𝑎𝑠𝑘 , H𝑠𝑎𝑚𝑝𝑙𝑒 , H𝐷𝑆𝐶 , H𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑖𝑜𝑛 , Encoders: GAT𝑜 ,
GAT𝑝 , GAT𝑞 , Projection heads: MLP𝑜 , MLP𝑝 , MLP𝑞 , m, n;

Output: Trained GAT𝑜 , GAT𝑝 , GAT𝑞 , MLP𝑜 , MLP𝑝 , MLP𝑞 ;
1: Go

P = (𝐺𝑜
𝑝.1, 𝐺

𝑜
𝑝.2, · · · , 𝐺

𝑜
𝑝.𝑚) = H𝑃𝐺𝐷 (𝐺𝑜 ) ∪ H𝑚𝑎𝑠𝑘 (𝐺𝑜 )

∪ H𝑠𝑎𝑚𝑝𝑙𝑒 (𝐺𝑜 ) ∪ H𝐷𝑆𝐶 (𝐺𝑜 ) ∪ H𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑖𝑜𝑛(𝐺𝑜 );
2: G𝑜

𝑄
= (𝐺𝑜

𝑞.1,𝐺
𝑜
𝑞.2, · · · ,𝐺

𝑜
𝑞.𝑛) = sampling the negative instances

from the rest of software families;
3: for {𝐺𝑜𝑝.𝑎}𝑚𝑎=1 ∈ G𝑜

𝑃
do

4: B𝑜 = 𝐺𝑜𝑝.𝑎 ∪ G𝑜
𝑄
;

5: h𝐺𝑜
= GAT𝑜 (𝐺𝑜 );

6: z𝐺𝑜
= MLP𝑜 (h𝐺𝑜

);
7: h𝐺𝑜

𝑝.𝑎
= GAT𝑝 (𝐺𝑜𝑝.𝑎);

8: z𝐺𝑜
𝑝.𝑎

= MLP𝑝 (h𝐺𝑜
𝑝.𝑎

);
9: for {𝐺𝑜

𝑞.𝑑
}𝑛
𝑑=1 ∈ B𝑜\{𝐺𝑜𝑝.𝑎} do

10: h𝐺𝑜
𝑞.𝑑

= GAT𝑞 (𝐺𝑜𝑞.𝑑 );
11: z𝐺𝑜

𝑞.𝑑
= MLP𝑞 (h𝐺𝑜

𝑞.𝑑
);

12: end for

13: Computing l𝑜,𝑝.𝑎 by using Eq. 14;
14: end for

15: for a = 1 to m do

16: L= 1
𝑚

∑𝑚
𝑎=1 𝑙𝑜,𝑝.𝑎 ;

17: end for

18: Updating 𝐼𝑜 by maximizing L with backpropagation;
19: 𝐼𝑝=𝜆1 ∗ 𝐼𝑝+(1-𝜆1)∗𝐼𝑜 ;
20: 𝐼𝑞=𝜆2 ∗ 𝐼𝑞+(1-𝜆2)∗𝐼𝑜 ;
21: return GAT𝑜 , GAT𝑝 , GAT𝑞 , MLP𝑜 , MLP𝑝 , MLP𝑞

where z𝐺𝑜
, z𝐺𝑜

𝑝
, and z𝐺𝑜

𝑞.𝑑
denote the low-dimensional represen-

tations of 𝐺𝑜 , 𝐺𝑜𝑝 , and 𝐺𝑜
𝑞.𝑑

after GAT encoders and non-linear
projection heads, respectively. 𝜏 denotes a preset temperature pa-
rameter. Hence, the final loss L is computed across all positive and
negative instance pairs, and it is formalized as:

L =
1
𝑚

𝑚∑︁
𝑝=1

𝑙𝑜,𝑝 . (15)

The contrastive loss is then used to train the graph encoders
GAT𝑜 , GAT𝑝 , GAT𝑞 , as well as the projection heads MLP𝑜 , MLP𝑝 ,
MLP𝑞 . Inspired by the momentum strategy [24], we tactfully fine-
tune the parameters 𝐼𝑜 of GAT𝑜 or MLP𝑜 by backpropagation and
then momentum-based update the rest parameters of GAT𝑝 (or
MLP𝑝 ) and GAT𝑞 (or MLP𝑞 ) by utilizing the 𝐼𝑜 when training mul-
tiple graph encoders and projection heads. The pseudocode of A2-
CLM is depicted in Algorithm 1.

4 EXPERIMENTS

In this section, we conduct ample experiments to show the effective-
ness of A2-CLM on sufficient malware detection tasks and few-shot
malware detection tasks. We first introduce the four datasets used
for experiments and the experiment setup. Then, we demonstrate
the experimental results, including the comparison of performance,

parameter sensitivity, unknown malware detection, ablation study,
and robustness against packed malware.

4.1 Dataset and Baseline Methods

4.1.1 Dataset. We evaluate A2-CLM on four real-world malware
benchmark datasets, including BIG 2015 [41], Ember [2], API Call
Sequences [42], and ACT-KingKong [29], which are widely used in
recent malware detection research. Detailed statistics are shown in
Table 2, and the detailed descriptions are given as follows:

• BIG 2015 contains 10,868 malware files from 9 malware
families and various features (such as function calls, strings,
etc.) extracted from the binary by the IDA disassembler tool.

• Ember is a realistic dataset with 50% malicious software
and 50% benign software that contains eight groups of raw
features from 140,000 PE files.

• API Call Sequences includes the first 100 API sequences of
37,784 malware samples and 1,079 benign samples that are
collected in a sandboxed environment, which is constantly
used in Kaggle competitions and dynamic detection research.

• ACT-KingKong contains execution reports of 8,494 mali-
cious files and 3,042 benign files from Mar 2019 to Oct 2019,
and each report contains 8 types of malware objects, includ-
ing processes, files, networks, memories, registries, systems,
mutexes, and attributes. To identify few-shot malware from
different families, we submitted the hash value of each file
to VirusTotal1 and counted 102 distinct malware families.

For all datasets, we randomly divided all categories into 6:2:2 for
the training set, validation set, and test set, respectively.

4.1.2 Baseline Methods. We make comparisons with the following
state-of-the-art baselines:

• MalConv [40] is a CNN-based detection model that can
learn the spatial features between the byte sequences of
malware.

• CNN+BPNN [64] is a hybrid framework that employs CNN
and BPNN to extract opcode features and API features.

• MatchGNet [55] is a GNN-based model that characterizes
the execution events of malware into a heterogeneous graph
and extracts metapath-based features to detect malware.

• MG-DVD [29] is a dynamic detection framework that incre-
mentally learns graph embedding by utilizing the overlap-
ping information of adjacent sliding windows.

• API+AAE [37] is a generative model that proposes an ad-
versarial auto-encoder (AAE) for malware detection.

• GraphCL [63] is a pre-training framework that uses sub-
graph instance discrimination to distinguish between similar
and dissimilar few-shot instances.

• GACL [47] is a GCN-based model that adopts adversarial
learning and contrastive learning.

4.2 Experimental Settings

We train A2-CLM on a machine with a 16 cores Intel(R) Core(TM)
i7-6700 CPU @3.40 GHz with 64 GB RAM and 4×NVIDIA Tesla
K80 GPU. All of the experiments developed with Python 3.6 are
executed on the TensorFlow-GPU framework supported by Ubuntu
1https://www.virustotal.com.
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Table 2: Statistics of The Four Datasets

Dataset Samples Distribution Network Size

BIG 2015

Ramnit Lollipop Kelihos_ver3 Vundo Simda Tracur Kelihos_ver1 Obfuscator.ACY Gatak Avg. # Node Avg. # Degree
1,541 2,478 2,942 475 42 751 398 1,228 1,013 153.3 1.04

API Call Sequences

Trojan Downloader Virus Spyware Adware Dropper Worm Backdoor Benign Avg. # Node Avg. # Degree
12,824 6,560 5,522 5,897 4,449 945 808 779 1,079 84.1 1.29

Ember

Malware Benign - - - - - - - Avg. # Node Avg. # Degree
69,860 70,140 - - - - - - - 16.8 1.84

ACT-KingKong

Trojan Virus Worm Backdoor Downloader Ransom Dropper Benign - Avg. # Node Avg. # Degree
4,536 1,606 842 660 394 338 118 3,042 - 23.7 3.61

(# Family) 42 17 20 12 4 3 4 1 - - -

Table 3: Performance on Malware Detection

Method ACT-KingKong dataset Ember dataset BIG 2015 dataset API Call Sequences dataset

Recall Precision ACC F1-score Recall Precision ACC F1-score Recall Precision ACC F1-score Recall Precision ACC F1-score

MalConv [40] 83.32 90.85 84.31 86.92 90.32 92.68 91.55 91.48 95.95 97.28 96.15 96.61 80.58 81.19 80.64 80.88
CNN+BPNN [64] 87.36 91.95 88.29 89.60 92.88 93.52 93.23 93.20 97.26 97.94 97.31 97.60 83.71 84.09 83.73 83.90

MatchGNet [55] 91.37 93.72 91.71 92.53 94.03 96.48 95.35 95.24 97.51 98.02 97.55 97.76 86.82 87.13 86.85 86.97
MG-DVD [29] 96.51 98.16 97.63 97.33 94.87 97.02 95.94 95.93 97.83 98.44 97.83 98.13 86.97 88.28 86.99 87.62

API+AAE [37] 90.28 91.93 90.29 91.10 92.95 95.29 94.16 94.11 96.15 96.71 96.18 96.43 82.66 84.07 83.97 83.36
GraphCL [63] 94.46 94.96 94.47 94.71 93.76 94.83 93.97 94.29 97.54 98.06 97.58 97.80 85.23 85.54 85.23 85.38
GACL [47] 97.35 97.73 97.68 97.54 96.62 97.56 96.69 97.09 98.22 98.43 98.21 98.32 88.15 88.72 88.19 88.43

A2-CLM (ours) 98.87 99.04 98.87 98.95 99.21 99.66 99.28 99.43 99.69 99.85 99.70 99.77 94.22 95.06 94.25 94.64

% Improvement 1.52% 1.31% 1.19% 1.41% 2.59% 2.10% 2.59% 2.34% 1.47% 1.42% 1.49% 1.45% 6.07% 6.34% 6.06% 6.21%

16.0.4 operating system. We measure the performance of A2-CLM
in terms of recall, precision, ACC, F1-score, and AUC.

We utilize Adam [25] for optimization with the learning rate of
0.005, decay of 0.00001, mini-batch size of 64, temperature 𝜏 = 0.07,
embedding size of 128, number of layers of GAT to 4, and momen-
tum 𝜆1=𝜆2= 0.99.

4.3 Few-shot Malware Detection Results

4.3.1 Effectiveness Evaluation. In this subsection, we evaluate the
detection performance of A2-CLM on the sufficient malware sam-
ples tasks as well as the few-shot malware tasks. We run our pro-
posed framework 10 times and report the average results in Table 3
and Table 4. The experimental results show that our proposed A2-
CLM outperforms all baseline methods in terms of all evaluation
metrics, especially in the 1-shot task and 10-shot task. In fact, the
improvement of A2-CLM can be attributed to the following traits:

First, compared with the feature-based supervised learning de-
tection methods, such as MalConv and CNN+BPNN, our proposed
A2-CLM achieves more than 2.39%∼10.58% improvement in terms
of ACC on the sufficient malware samples tasks and more than
33.87%∼47.62% improvement in terms of ACC on the 1-shot mal-
ware tasks. These experimental results mainly contribute to the
fact that A2-CLM not only models the various malware objects and
their interactions into heterogeneous graphs to capture the context
structure semantics of few-shot malware but also employs graph

attention networks (GATs) to generate the fine-grained graph-level
representations, which is beneficial to improving the detection
performance of A2-CLM.

Second, on sufficiently large malware sample tasks, the detec-
tion performances of the existing graph-based supervised learning
malware detection methods, such as MatchGNet and MG-DVD, are
close to that of A2-CLM. This is because they ingeniously leverage
graph neural networks (GNNs) to capture the high-order seman-
tic information from a large quantity of malware samples, which
can better express the evolving patterns of the malware. They do
poorly on 1-shot tasks, however, because they rely on a large cor-
pus of labeled samples to train the model in a supervised manner.
Differently, our proposed A2-CLM no longer concentrates on la-
beling information but is equipped with the capability to learn
more discriminative and robust few-shot malware fingerprints by
self-supervised contrastive learning.

Third, compared with the most relevant self-supervised works
involving API+AAE, GraphCL, and GACL, the advantages of A2-
CLM are twofold. On the one hand, API+AAE only extracts the
isolated API features, and its detection performance heavily de-
pends on the generated adversarial samples and whether they con-
tain sufficient detail. Contrarily, A2-CLM is capable of recognizing
few-shot malware by investigating the approximate discriminative
patterns based on the semantically rich sensitivity heterogeneous
graph instances. On the other hand, although GraphCL and GACL
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Table 4: Performance on Few-shot Malware Detection

ACT-KingKong dataset Ember dataset BIG 2015 dataset API Call Sequences dataset

Method 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot

ACC F1-score ACC F1-score ACC F1-score ACC F1-score ACC F1-score ACC F1-score ACC F1-score ACC F1-score

MalConv [40] 38.24 38.71 47.36 47.42 34.55 34.59 42.16 42.66 37.64 38.09 45.88 45.85 32.86 32.90 45.37 45.63
CNN+BPNN [64] 43.85 43.89 53.05 53.11 35.72 35.78 44.37 44.36 40.91 41.28 49.63 49.61 39.28 39.75 51.66 51.71

MatchGNet [55] 50.12 50.58 57.19 57.15 40.31 40.42 50.08 50.23 46.29 46.25 53.18 53.57 47.43 47.45 57.19 57.28
MG-DVD [29] 52.50 52.59 61.77 61.73 44.27 44.71 51.82 52.09 48.53 48.50 55.92 55.95 48.52 48.69 60.74 60.72

API+AAE [37] 64.63 64.89 69.43 69.42 50.68 50.72 55.23 55.21 60.74 60.68 64.51 64.88 60.94 61.14 69.25 69.24
GraphCL [63] 67.71 67.86 71.28 71.35 60.83 61.59 64.75 64.77 68.16 68.19 71.35 71.41 63.66 63.61 70.83 70.85
GACL [47] 80.59 80.63 82.81 82.84 74.65 74.69 78.66 78.61 77.57 77.72 80.24 80.25 68.57 68.62 77.06 77.12

A2-CLM (ours) 91.47 91.54 93.74 93.89 82.44 82.48 87.19 87.15 86.81 86.79 89.47 89.52 73.15 73.22 80.58 80.65
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Figure 6: Time efficiency comparison on four datasets.

can provide promising detection frameworks in a self-supervised
contrastive learning, they only investigate oversimplified data aug-
mentations for homogeneous graphs because they ignore nonlinear
heterogeneous dependencies and lack practical malware data aug-
mentation, degrading the few-shot malware detection performance.
On the contrary, A2-CLM designs five insightful adversarial het-
erogeneous graph augmentations that make full use of adversarial
attacks and expert knowledge, enhancing the effectiveness of few-
shot malware detection.

4.3.2 Efficiency Evaluation. Here we study the time efficiency of
A2-CLM processing each sample on four datasets. The comparison
results are shown in Figure 6. We make two crucial observations.

First, from Figures 6(a-b), we can see that A2-CLM is consistently
faster than the existing homogeneous graph contrastive learning
models (i.e., GraphCL and GACL) over all datasets. The reason for
efficiency improvement is attributed to A2-CLM utilizing meta-
graph structures to guide the walk and generate positive instances
rather than uniformly sampling a lot of noise in GraphCL and
GACL, which is capable of reducing the walking cost and train-
ing cost. Second, Figures 6(a-b) also show the time overhead of
the feature-based detection methods (i.e., MalConv, CNN+BPNN,
and API+AAE) is significantly less than that of graph-based meth-
ods (i.e., MatchGNet, MG-DVD, GraphCL, GACL, and A2-CLM)
in all datasets because they do not need to consider the complex
graph structure involved with various types of malware entities
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Figure 7: Performance change of A2-CLM with major param-

eters.

and interactive relationships, which empirically proves that the
simpler the model, the lower the time complexity.

4.4 Parameter Sensitivity

In this subsection, we investigate the sensitivity of four major
parameters on the performance of A2-CLM, including the masking
ratio of L𝑚 (i.e., r), the shot number of samples (i.e., n-shot), the
number of PGD attacks (i.e., k), and the momentum value (i.e., 𝜆).

4.4.1 Effect of Masking Ratio r. We first explore the significance of
attribute masking ratio r for the A2-CLM framework. As depicted
in Figure 7(a), with the masking ratio r growing, the ACC value
first steadily rises, which can be attributed to masking more values
in the sensitivity attribute matrix, which would produce more ro-
bust positive instances for few-shot malware contrastive learning.
Additionally, with the masking ratio growing, the improvement of
ACC in Figure 7(a) is within a certain range, which is related to the
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Figure 8: The performance of A2-CLM with different numbers of PGD attacks.

Table 5: Performance on Unknown Malware Detection

Method 𝐷𝑘𝑛𝑜𝑤𝑛=𝐷𝑢𝑛𝑘𝑛𝑜𝑤𝑛=50% of the software family

Recall Precision ACC F1-score AUC

MalConv [40] 75.61 75.98 75.68 75.94 73.32
CNN+BPNN [64] 79.64 80.35 79.73 79.99 77.54

MatchGNet [55] 85.25 85.92 85.25 85.58 82.91
MG-DVD [29] 86.44 87.15 86.53 86.79 84.87

API+AAE [37] 87.28 88.10 87.34 87.69 85.95
GraphCL [63] 90.67 90.92 90.68 90.79 88.03
GACL [47] 92.06 93.13 92.11 92.59 89.28
A2-CLM 95.19 95.74 95.37 95.46 93.30

sparsity of the attribute matrix of the samples, so we experimentally
select the masking ratio r at 30% for effectiveness consideration.

4.4.2 Effect of The Shot Number n. We also investigate the im-
pact of shot number n on the performance of A2-CLM. Figure 7(b)
presents the detection accuracy of A2-CLMwhen gradually increas-
ing the shot number n on different datasets. With more samples
included in each type of all datasets, the accuracy increases obvi-
ously, as expected. Particularly, there is a 3.76%, 5.91%, 9.76%, and
10.29% increment of accuracy when the shot number is increased
from 1 to 10 in the ACT-KingKong dataset, BIG 2015 dataset, Em-
ber dataset, and API Call Sequence dataset, respectively, which
attributes to more shots included in each type and means the pro-
posed A2-CLM can learn more distinguishable information from
more instances to help distinguish new malware. In addition, as
the shot number increases, the detection performance of A2-CLM
becomes more and more gentle, indicating that A2-CLM can get
very excellent performance by adding a small number of samples.

4.4.3 Effect of The Momentum Value 𝜆. We further study the effect
of the different momentum values in the proposed A2-CLM frame-
work. Momentum 𝜆 plays an important role in training efficient
contrastive learning. Figure 7(c) shows the detection accuracy with
different momentum values on four datasets. It is worth noting that
a larger momentum value brings better performance, which shows
that the more stable and consistent the evolution of 𝜆1 and 𝜆2, the
better the performance. As shown in Figure 7(c), we can find that

an appropriate value can achieve the desired performance. Specifi-
cally, the best performance is reached when 𝜆=0.99 on the API Call
Sequence dataset, Ember dataset, and ACT-KingKong dataset.

4.4.4 Effect of The Number of PGD Attacks k. The PGD attacks
have a strong influence on generating realistic and robust con-
trastive instances. As shown in Figures 8(a-d), the ACC increases
significantly as k increases, which can be attributed to more PGD
attacks; more attribute-level adversarial instances can be obtained.
However, the higher the number of PGD attacks, the higher the
training cost. That is, the A2-CLM’s training time almost doubles
for each additional PGD attack. As a result, we use two PGD at-
tacks to maintain the trade-off between A2-CLM’s effectiveness
and efficiency.

4.5 Unknown Malware Detection

This subsection focuses on evaluating A2-CLM for unknown mal-
ware detection. To simulate unknown malware instances in the
wild or unseen new families, we randomly split all samples from
the ACT-KingKong dataset into two sets: D𝑘𝑛𝑜𝑤𝑛 = 50% of the soft-
ware families (i.e., 52 families), D𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = the remaining 50% of
the software families (i.e., 51 families). Moreover, to ensure that
each family has been in the unknown set as far as possible, we
employ k-fold cross-validation to evaluate our A2-CLM and report
the average experimental results.

We report the average detection performance of all 8 methods
on the unknown malware detection task in Table 5. All evaluation
metrics of A2-CLM outperform the state-of-the-art methods. Con-
cretely, the accuracy of A2-CLM is at least 3.26% better than base-
line methods, which is attributed to A2-CLM leveraging adversarial
augmentation-based contrastive learning to perform well on un-
known families by capturing the matching patterns and mismatch-
ing patterns via its intrinsic discriminative mechanism. On the
contrary, existing supervised learning methods, especially feature-
based detection methods, suffer a significant drop in detection per-
formance when faced with unknown families or unknown malware
because they strongly rely on known fingerprints and blacklists,
which cannot handle samples that are outside the training set.

4.6 Ablation Study

4.6.1 Sensitivity Grading Method. We first study the contribution
of the sensitivity grading method on A2-CLM. As shown in Figure 9,
the detection performance of A2-CLM is slightly superior to that of
its variant model, A2-CLM no SG, on all datasets, confirming that
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(a) ACT-KingKong dataset (b) Ember dataset (c) BIG 2015 dataset (d) API Call Sequence dataset

Figure 9: The effect of the sensitivity grading method on A2-CLM.

(a) ACT-KingKong dataset (b) Ember dataset (c) BIG 2015 dataset (d) API Call Sequence dataset

Figure 10: Accuracy gain(%) of A2-CLM when contrasting different adversarial heterogeneous graph augmentation pairs on all

datasets. “Identical” stands for a no-augmentation. The lighter color indicates better performance gains.

the security semantics implicit in run-time behavior are beneficial
to boosting the detection capability of A2-CLM. Furthermore, the
varying degrees of sensitivity allow the few-shot malware detection
results to be interpreted.

4.6.2 Adversarial Heterogeneous Graph Augmentation. We then as-
sess the role of different adversarial heterogeneous graph augmen-
tations in our A2-CLM framework. As illustrated in Figures 10(a-d),
we can discover that without any data augmentation in the con-
trastive learning, it is not helpful for the downstream few-shot mal-
ware detection tasks, judging from the value 0 of the “Identical” pair.
In contrast, from the top rows or the right columns in Figures 10(a-
d), we believe that composing different adversarial heterogeneous
graph augmentations can enhance the detection performance. Con-
cretely, when we composed “Sample" and “PGD", the maximum
accuracy gains were 7.34%, 7.04%, and 7.53% for the ACT-KingKong
dataset, Ember dataset, and BIG 2015 dataset, respectively. Similarly,
when we composed “DSC" and “Mask", the maximum accuracy gain
was 6.42% for the API Call Sequence dataset. These findings prove
that applying the same type of heterogeneous graph data augmen-
tations does not bring out the best detection performance; however,
by composing different types of adversarial heterogeneous graph
augmentations, especially at the structure-level and attribute-level,
the proposed A2-CLM can reach the best detection performance,
which avoids the learned representations overfitting.

4.6.3 Meta-graph. Finally, we investigate the impact of various
meta-graphs on the performance of few-shot malware detection
by gradually incorporating meta-graphs into our A2-CLM. In Fig-
ure 11, we can observe that by incorporating more meta-graphs,
the ACCs of A2-CLM on all datasets are higher, which empirically

Figure 11: Performance change of A2-CLM when gradually

incorporating meta-graphs in terms of ACC.

proves that diverse meta-graphs are capable of capturing the unique
semantic information and helping capture the intrinsic malicious
patterns of few-shot malware. Particularly, we can find that when
adding𝑀1,𝑀4, and𝑀6, A2-CLM has a significant boost in the ACT-
KingKong dataset; a similar situation happens when we add 𝑀1
and𝑀3 in the API Call Sequence dataset. Additionally, the detec-
tion performance has a slight improvement in the BIG 2015 dataset
and the Ember dataset, which is attributed to the fact that the mal-
ware heterogeneous graph instances in these two datasets have
fewer structures that satisfy the pre-defined meta-graphs, making
it difficult to reflect the advantages of meta-graphs in A2-CLM.

4.7 Packed Malware

Using the ACT-SANDBOX dataset’s encountered packed malware,
we tested A2-CLM’s robustness against packers. As shown in Ta-
ble 6, we consider four types of packers, whose complexity ranges
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Table 6: Performance on Packed Malware Detection

Packer Packer Type # Malware ACC

UPX Type-I 176 0.989
BobSoft Mini Delphi Type-I 73 0.977

ASPack Type-III 84 0.974
Armadillo Type-VI 138 0.956

from Type-I to Type-VI [16]. We see that A2-CLM can unpack and
analyze samples packed with the common packers (i.e., UPX, Bob-
Soft Mini Delphi, ASPack, and Armadillo), regardless of the Type-I
packers that can be easily unpacked only using a single unpacking
routine or the Type-VI packers that can be unpacked using a multi-
layer routine. Hence, we believe that A2-CLM is robust enough
to enable a large-scale study of packed malware. However, some
packers use virtualization [50] or repackaging [28, 43] technologies
to generate complex variants by converting software into bytecode
and evading sandbox detection. Consequently, A2-CLM cannot han-
dle the virtualization and repackaging of malware variants, which
account for a tiny fraction of packed malware [50].

5 RELATEDWORK

5.1 Malware Detection

The research on malware detection mostly focuses on supervised
learning, which leverages deep learning and even graph neural
networks to extract various static or dynamic fingerprint features
of malware. Their successes depend on handling a large number of
labeled samples. Concretely, Tian et al. [49] first adopted structured
heterogeneous information networks (HINs) for malware detec-
tion and then designed a similarity-based approach to detect the
malware. Wang et al. [55] designed MatchGNet, where the simi-
larities between the target malware and all benign samples can be
measured by leveraging meta-path-based graph representations.
Recently, Liu et al. [29] attempted to investigate the real-time detec-
tion framework based on the sliding window, which can effectively
and efficiently defend against malware attacks with two dynamic
walk-based heterogeneous graph learning methods.

However, the aforementioned methods not only ignore the secu-
rity semantics implicit in run-time behavioral parameters but also
heavily depend on a large corpus of labeled samples, limiting the
capability of few-shot malware detection.

5.2 Few-shot Malware Classification

Research on few-shot malware classification is still in its infancy.
Bai et al. [5] adopted a siamese-network method to identify the
few-shot Android malware, which extracted three types of syntac-
tic features and trained a multi-layer perceptron (MLP). Wang et
al. [53] proposed a few-shot malware dynamic analysis approach
based on meta-learning, which has the ability to classify novel
malware families that have never met. To solve the one-shot mal-
ware outbreak, Park et al. [37] developed the generative adversarial
auto-encoder (AAE) [33] for malware detection.

However, the aforementioned few-shot malware classification
methods have certain flaws. Firstly, the meta-learning-based classi-
fication method is essential to hold the memory of the previously

learned samples, which undoubtedly causes catastrophic forgetting
and new data over-fitting; Secondly, the generative model heavily
concentrates on each detail of the sample, which would cause poor
detection performance once the generated adversarial sample did
not contain enough information for matching. Conversely, our pro-
posed A2-CLM designs heterogeneous graph contrastive learning
to conquer the aforementioned limitations in few-shot malware
classification, which is capable of recognizing new few-shot mal-
ware by investigating only the approximate discriminative patterns
instead of sufficient detail.

5.3 Graph Contrastive Learning

Graph contrastive learning has been successfully applied to many
tasks [31, 59]. For example, DGI [52] first attempted to extend the
Deep InfoMax in CV to the graph data, which implemented a graph
convolutional network (GCN) as the encoder and maximized the
mutual information between input and output. Unlike DGI, which
targets learning node-level representation, Sun et al. [45] intended
to maximize the mutual information between graph-level represen-
tations. Inspired by what CMC has done to improve Deep InfoMax,
Hassani et al. [23] presented a contrastive multi-view representa-
tion learning method for graph data that adopts graph diffusion
to yield positive sample pairs. Qiu et al. [39] pioneered the use
of instance discrimination for graph pre-training. They utilized
random walks with restart (RWR) to generate independent sub-
graphs as instances and calculated the InfoNCE [36] loss, which
is friendly to large-scale graphs. You et al. [63] believed that node
neighborhood reconstruction is a local-global contrast and that em-
phasizing neighborhood information over structural information
would destroy structural information. Therefore, they proposed
four augmentation methods based on homogeneous graphs to pro-
duce the positive samples, which achieve better performance on
dissimilar datasets.

However, the existing data augmentation of the aforementioned
graph contrastive learning methods emphasizes generating aug-
mented instances for homogeneous graphs, which are feeble for
malware heterogeneous graphs due to their neglecting the het-
erogeneous dependencies of various malware entities. To address
this problem, our A2-CLM proposes to generate more practical
contrastive pairs by investigating five types of adversarial hetero-
geneous graph augmentation, which is beneficial to improving the
model’s robustness and enhancing the effectiveness of few-shot
malware detection.

6 CONCLUSION

In this paper, we propose a novel few-shot malware detection model
named A2-CLM, which overcomes the label scarcity issue by im-
plementing self-supervised graph contrastive learning. A2-CLM
combines sensitivity heterogeneous graphs and adversarial data
augmentations to detect malware efficiently and robustly. Our eval-
uation has verified the superiority of our proposed A2-CLM in
identifying few-shot malware tasks.
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