
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A2-CLM : Few-shot Malware Detection Based on Adversarial
Heterogeneous Graph Augmentation

Anonymous Author(s)

ABSTRACT

Malware attacks, especially “few-shot” malware, have profoundly
harmed the cyber ecosystem. Recently, malware detection models
based on graph neural networks have achieved remarkable suc-
cess. However, these efforts over-rely on sufficient labeled data
for model training and thus may be brittle in few-shot malware
detection because of the label scarcity. To this end, we propose a
self-supervised malware detection framework based on graph con-
trastive learning and adversarial augmentation, termed A2-CLM, to
address the challenge of few-shot malware detection. Particularly,
A2-CLM first depicts the malware execution context with a sensitiv-
ity heterogeneous graph by assessing the security semantic of each
behavior. Afterwards, A2-CLM designs multiple adversarial attacks
to generate more practical contrastive pairs, including the PGD
attack, attribute masking attack, meta-graph-guide sampling attack,
direct system calls attack, and obfuscation attack, which is benefi-
cial to strengthening the model’s effectiveness and robustness. To
alleviate the training workload of contrastive learning, we intro-
duce a momentum strategy to train the multiple graph encoders in
A2-CLM. Especially on 1-shot detection tasks, A2-CLM achieves
performance gains of up to 24.63% and 4.58% against supervised
and self-supervised detection methods, respectively.

CCS CONCEPTS

• Security and privacy→ Few-shot malware detection.

KEYWORDS

few-shot malware detection, security semantic, graph contrastive
learning, adversarial heterogeneous graph augmentation

ACM Reference Format:

Anonymous Author(s). 2018. A2-CLM : Few-shot Malware Detection Based
on Adversarial Heterogeneous Graph Augmentation. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 14 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Driven by the advent of sophisticated attack vectors, the exponen-
tial increase of new malware seriously disturbs the health of the
network environment and degrades the user experience [11, 69].
According to a recent report [4], AV-TEST identified over 450,000

Unpublished working draft. Not for distribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

P1 P2

F1

A1

R1

CopyFile

(a) Normal instance

P1 P2

F1

A1

R1

CopyFile

x
A3

add

NtReadFile

A4

NtWriteFile

add

A2

add

NtOpenFile

(b) Adversarial instance

Figure 1: (a) A normal malware instance; (b) An adversarial

malware instance using code obfuscation techniques.

new malware registrations daily, many of which are wild instances
of malware or new families that have not yet been seen, making it
difficult to collect and label analyzable samples [1]. As a result, ef-
fectively detecting malware, particularly newly emerging malware,
is critical in network security to protect users from future threats.

Deep learning exhibits a crucial role in malware detection, as
it can automatically learn the feature vectors from the malware
samples [9, 15]. Generally, these approaches can be roughly divided
into two scopes: feature-based and heterogeneous graph-based mal-
ware detection methods. Specifically, the feature-based detection
methods concentrate on extracting representative signature or be-
havior features, such as opcodes [17, 40, 64], permissions[3, 8], API
call sequences [11, 22, 38, 46, 66], and network traffic [35, 65]. How-
ever, these methods merely emphasize the isolated features of the
malware and ignore the contextual structural information of mal-
ware propagation. Thus, several studies have strove to capture the
interactive structure patterns for malware detection by leveraging
heterogeneous graphs [14, 29, 30, 49, 55]. These methods model
the various malware entities as a heterogeneous graph and em-
ploy graph neural networks (GNNs) to learn a more comprehensive
low-dimensional representation.

Despite the aforementioned deep learning-based detection meth-
ods recently showing the great potential in malware detection,
unfortunately, they are mostly plagued by two flaws. Firstly, the
existing deep learning-based detection methods severely rely on
training a proper model in a supervised end-to-end manner, where
a large number of task-specific labels are needed [48, 61]. How-
ever, the few-shot issue of malware detection tasks is significant,
where each class of the training set contains a limited number
of samples [45], which may disable the existing deep learning-
based methods. Secondly, the existing deep learning-based detec-
tion methods that emphasize grasping attack details of known
training samples often lead to poor generalization capabilities and
a lack of robustness [13, 67] against adversarial samples shown
in Figure 1(b). Actually, an experienced attacker always replaces
sophisticated malicious behavior (i.e., the malicious API operation
“CopyFile” in Figure 1(a)) with equivalent normal behavior (i.e., the

2023-01-18 06:12. Page 1 of 1–14.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t f
or
dis
tri
bu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

<action field="start_boot" type="Network" name="connect" call_pid="2036"
call_name="1.exe" >

<exInfo_list count="1">
…

</exInfo_list>
<action field="start_boot" type="File" name="WriteFile" call_pid="2036"
call_name="1.exe">

<exInfo_list count="1">
<exInfo value="HarddiskVolume1\vastest\1.usr"descr="file path"/>

</exInfo_list>

Entity : Network Relation : connect

Entity : File Relation : access

(a) A snippet of malware execution behavior

(b) Schema of A2-CLM

ca
ll

accessconnect

download

Registry

Network File

ProcessSystem

Memory

fork
set

open

re
ad

(c) Detection capability

Known Malware

A2-CLM
In-sample Variants

Out-sample Variants

Few-shot Malware

API

Parameter

Figure 2: Network schema and detection capability of A2-

CLM.

benign API operations (“NtOpenFile”, “NtReadFile”, “NtWriteFile”)
in Figure 1(b)) to evade detection, resulting in the existing detection
models being feeble for defending these advanced variant attacks.

To this end, malware detection models need to become more
robust in the face of unseen, even unlabeled, few-shot malware,
which leads to our innovations below.

In this paper, we present a self-supervised graph Contrastive
Learning few-shot Malware detection framework with Adversarial
heterogeneous graph Augmentation (i.e., A2-CLM) to achieve a
more robust and effective few-shot malware detection. Concretely,
A2-CLM first advocates a sensitivity heterogeneous graph to model
malware’s interactive behavior (Figure 2(a)) as the contrastive in-
stance (Figure 2(b)), whose key insight is that the pre-determined
sensitivity of run-time behavior can assist in accurate few-shot mal-
ware detection. Then, to manufacture more practical augmented
instances for few-shot malware detection, A2-CLM explores com-
prehensive adversarial augmentations such as attribute-level adver-
sarial attacks and structure-level adversarial attacks to simulate the
case of Figure 1(b), which provides input data with rich and reason-
able noise for the subsequent instance-based discriminator. Finally,
inspired by the soaring performance of contrastive learning in com-
puter vision [10, 20, 24] and natural language processing [12, 27, 60],
A2-CLM introduces self-supervised graph contrastive learning to
train the graph encoders to generate robust and powerful represen-
tations, which eventually achieve the ability of malware detection
with a small number of unlabeled samples (Figure 2(c)).

To conclude, the major contribution of this work can be summa-
rized as follows:

• We present a novel few-shot malware detection framework,
termed A2-CLM, to utilize adversarial heterogeneous graph
augmentation to contribute to self-supervised graph con-
trastive learning, which is capable of achieving more effec-
tive and robust malware detection since A2-CLM prevents
some cases, such as code obfuscation variants, from being
misclassified by the detection model.

P1 P2
fM1 :

fP1 P2

F1
aa-

M5 :

o-
P1 P2S1

oM7 :

d a-
P1 P2N1 F1

cn
M8 :

f P2P1

cncn-
M6 :

N1

P1 P2
s s-M2 : R1

P1 P2
cM3 :

rP1 P2M4 : M1
r-A1

c-

Figure 3: Meta-graphs of A2-CLM.

• We present a sensitivity heterogeneous graph to model mal-
ware instances that fully exploits the propagative structure
information as well as the security semantics of various ma-
licious interactive behaviors. A sensitivity grading method
that integrates statistics-based and clustering-based tech-
niques, in particular, assigns varying degrees of sensitivities
to each interactive behavior, which can aid in accurate few-
shot malware detection and improve the interpretability of
detection results.

• We design two-level adversarial attacks to generate more
practical contrastive pairs for few-shot malware, including
the PGD attack, attribute masking attack, meta-graph-guide
sampling attack, direct system calls attack, and obfuscation
attack, each of which imposes certain semantic or structural
priors and is beneficial to learning more robust representa-
tions.

• Finally, we extensively evaluate A2-CLM on diverse real-
world datasets. A2-CLM achieves significant performance
gains in accuracy and F1-score compared to state-of-the-art
baselines, especially in few-shot malware detection tasks,
where it can achieve at least 4.58% and 3.52% improvements
on the 1-shot task and 10-shot task, respectively.

2 PRELIMINARIES

Definition 1. Few-shot Learning (FSL) [57] Few-shot learn-
ing is a type of machine learning (specified by E, T, and P), where E
contains only a limited number of examples with supervised informa-
tion for the target T, usually less than 20.

Definition 2. SensitivityHeterogeneousGraph of Few-shot
Malware (SHGFM).A sensitivity heterogeneous graph𝐺 = (V, E, S)
of the few-shot malware with a node type mapping Ψ : V ↦→ T
and an edge type mapping 𝜓 : E ↦→ R. Let V be the set of nodes,
E ⊆ V × V be the set of relationships between nodes in V , and
S ∈ R𝑑×𝑓 is the sensitivity attribute matrix. Each node 𝑣𝑥 ∈ V
belongs to one particular malware entity type in the node type set
T : Ψ(𝑣𝑥) ∈ T , and each edge 𝑒𝑥 ∈ E belongs to a particular rela-
tionship type in the edge type set R : 𝜓 (𝑒𝑥) ∈ R, where |T | + |R| > 2.
The x-th row vector s𝑥 ∈ R𝑓 of the sensitivity attribute matrix denotes
the entity attribute feature that concatenates the sensitivity score of
node 𝑣𝑥 , where each sensitivity score belongs to {1, 2, 3} assesses the
degree of malice of the corresponding run-time behavior.

2023-01-18 06:12. Page 2 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A2-CLM : Few-shot Malware Detection Based on Adversarial Heterogeneous Graph Augmentation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Statistics Clustering

…

<Process2,Process1,BeCreated>
<Process1,Memory1,UnpackSelf>
<Process1,File1,DeleteFile>
<Process1,File2,WriteFile>
<Process1,Registry1,DeleteKeyValue>
<Process2,File2,CopyFile>
<Process1,API1,Call>

<Process1,API2,Call>

…

<Process2,Process1,BeCreated,1>
<Process1,Memory1,UnpackSelf,2>
<Process1,File1,DeleteFile,3>
<Process1,File2,WriteFile,3>
<Process1,Registry1,DeleteKeyValue,3>
<Process2,File2,CopyFile,3>
<Process1,API1,Call,3>

<Process1,API2,Call,1>

A1

A2 P1

R1

P2

F2
F1

M1

P5

F4 Pi

A8

P6

N1

S1

(a) Sensitivity Heterogeneous Graph Construction (b) Adversarial Heterogeneous Graph Augmentation

Adversarial
Augmentation

A3

P1 P2

F2

A4

A2 GATp

GATo

GATq

(c) Contrastive Learning-based Malware Detection

Sensitivity-graded malware
behavior events

Raw malware behavior events

Malware instance Go

Benign instance Gq

Augmented instance Gp

hGp

hGo

hGq

F file N network P process S system A API R registry M memory (entity attribute, entity sensitivity)

LSimilar Pair

LDissimilar Pair

Figure 4: Overview of A2-CLM. (a) Sensitivity Heterogeneous Graph Construction intends to model the sensitivity-graded

behavior of the target malware with a sensitivity heterogeneous graph𝐺𝑜 , which holds processes, APIs, files, networks, systems,

registries, memories, and their interactive relationships. (b) Adversarial Heterogeneous Graph Augmentation crafts more

challenging augmented instances𝐺𝑝 through two levels of adversarial augmentation, such as attribute-level adversarial attacks

and structure-level adversarial attacks. (c) Contrastive Learning-based Malware Detection authorizes multiple GAT encoders,

which can concurrently obtain the graph-level representations ℎ𝐺𝑜
, ℎ𝐺𝑝

, and ℎ𝐺𝑞
; then, the InfoNCE loss function is encouraged

to evaluate the correspondence between the original malware instance and its augmented instances for the ultimate detection.

Definition 3. Meta-graph [68]. A meta-graph M is a directed
acyclic graph with a single source node 𝑛𝑠 (i.e., with in-degree 0) and
a single target node 𝑛𝑡 (i.e., with out-degree 0), defined on a SHGFM
𝐺 = (V, E, S) with schema 𝑇𝐺 = (A,R), then a meta-graph can
be defined as M = (V𝑀 , E𝑀 , A𝑀 , R𝑀 , 𝑛𝑠 , 𝑛𝑡), where V𝑀 ∈ V ,
E𝑀 ∈ E are constrained by A𝑀 ∈ A and R𝑀 ∈ R, respectively.

Figure 3 shows eight types of meta-graphs, and different meta-
graphs express different semantic information.

3 METHODOLOGY

In this section, we first formalize the few-shot malware detec-
tion problem and then elucidate the details of A2-CLM (shown
in Figure 4), which includes three components: (1) sensitivity het-
erogeneous graph construction (Figure 4(a)); (2) adversarial het-
erogeneous graph augmentation (Figure 4(b)); and (3) contrastive
learning-based malware detection (Figure 4(c)).

3.1 Problem Statement

Few-shot Malware Detection. As the means of attack by hackers
become more and more sophisticated [1, 54], many new emerg-
ing malware attacks make it difficult to collect sufficient analy-
sis samples in the wild, resulting in the “few-shot problem” that
is critical in malware detection tasks. Additionally, the security
semantics implied by different run-time behaviors are valuable
for few-shot malware detection, which are missed by existing

studies. For example, in Figure 4(a), the behavior “Process 2036
created by Process 208 starts execution (i.e. (𝑃𝑟𝑜𝑐𝑒𝑠𝑠1, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠2,
BeCreated))” is normal, while the behavior “Process 2036 modi-
fies 𝐻𝑎𝑟𝑑𝑑𝑖𝑠𝑘𝑉𝑜𝑙𝑢𝑚𝑒1\𝑣𝑎𝑠𝑡𝑒𝑠𝑡\1.𝑢𝑠𝑟 (i.e. (𝑃𝑟𝑜𝑐𝑒𝑠𝑠1, 𝐹𝑖𝑙𝑒2, Write-
File))” is malicious. The observations above motivate us to use self-
supervised learning and malware fine-grained execution context to
improve few-shot malware detection.

Recently, contrastive learning has shown sweeping successes in
few-shot learning [56], which concentrates on leveraging the data’s
inherent co-occurrence relationships as self-supervision without
the task-specific labeled information. In this work, we develop a
graph contrastive learning few-shot malware detection framework
that uses adversarial augmentation to improve the model’s robust-
ness with adversarial perturbations in a self-supervised manner.

A2-CLM. Given the target malware’s executive behavior events
𝐷𝑜 = {𝑒1, · · · , 𝑒 |𝐷 | }, A2-CLM first grades each run-time behavior
with varying degrees of sensitivities calculated from the param-
eter information involved in each event by statistics-based and
clustering-based techniques. Then A2-CLM leverages a sensitivity
heterogeneous graph𝐺𝑜 to model the sensitivity-graded behavior
events 𝐷′

𝑜 . To craft more challenging contrastive pairs, A2-CLM
fully augments m positive instances G𝑜

𝑃
= (𝐺𝑜

𝑝.1, · · · , 𝐺
𝑜
𝑝.𝑚) with

two levels of adversarial attacks on the original 𝐺𝑜 and randomly
chooses n negative instances G𝑜

𝑄
= (𝐺𝑜

𝑞.1, · · · , 𝐺
𝑜
𝑞.𝑛) from the rest

2023-01-18 06:12. Page 3 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

of the software types (e.g., benign, Trojan.Kazy, and so on). After-
wards, using encoders GAT𝑜 , GAT𝑝 , and GAT𝑞 , A2-CLM learns the
graph-level representations of 𝐺𝑜 , G𝑜𝑃 , and G𝑜

𝑄
. Finally, A2-CLM

utilizes the instance discriminators based on contrastive learning
to evaluate the agreement of each instance pair and outputs the
predicted malware type of the target few-shot malware 𝐺𝑜 .

Generally, the critical issues that A2-CML hankers for settling
are as follows:

Issue1: How to generate the fine-grained and robust instances for
few-shot malware detection tasks?

Issue2: How to create more proper and practical positive and nega-
tive contrastive instance for malware heterogeneous graphs?

Issue3: What are the discrimination rules of few-shot malware de-
tection?

3.2 Sensitivity Heterogeneous Graph

Construction

As shown in Figure 4(a), we collect the underlying executive be-
havior of malware in the KingKong system [44], which holds abun-
dant interactive relationships among heterogeneous malware ob-
jects (e.g., APIs, processes, networks, etc.). Hence, to address Issue1,
it is insightful to take advantage of the heterogeneous graph to
model various heterogeneous malware entities and relationships for
few-shot malware detection tasks. Unfortunately, the existing het-
erogeneous graph-based detectionmethods, such asMatchGNet [55],
MG-DVD [29], and so on, merely emphasize malware object type
and interactions among them; they ignore the security semantics
implicit in run-time behavioral parameters, which assist in identify-
ing malicious patterns and improve the interpretability of detection
results. To this end, A2-CLM is responsible for associating each
run-time behavior with crucial degrees of sensitivity by exploiting
the security semantics of specific parameters. Concretely, we pro-
pose a sensitivity grading method that integrates statistics-based
and clustering-based techniques to divide the entire behavior space
into three categories, such as benign (i.e., sensitivity of 1), sensi-
tive (i.e., sensitivity of 2), and malicious (i.e., sensitivity of 3), which
represent distinct security semantics.

3.2.1 Sensitivity Grading. Wefirst employ a statistics-basedmethod
to tackle the run-time behavior by estimating the distribution of
behavioral parameters in malicious software and benign software.
Concretely, we implement term frequency inverse document fre-
quency (TF-IDF) [19, 58] to assess the sensitivity of each behavior
event. Formally, the frequency can be expressed as:

𝑇𝐹𝑖 =
𝑛𝑖∑
𝑘 𝑛𝑘

, (1)

where 𝑛𝑖 is the number of occurrences of parameter i in events set
D, and

∑
𝑘 𝑛𝑘 is the sum of the occurrences of all parameters in the

events set D.
Let 𝑇𝐹𝑚 denote the frequency of a parameter in malicious soft-

ware, while 𝐷𝐹𝑚 refers to the frequency of the software containing
the parameter. 𝑇𝐷𝑚 equals 𝑇𝐹𝑚 × 𝐷𝐹𝑚 . Similarly, 𝑇𝐹𝑏 , 𝐷𝐹𝑏 , and
𝑇𝐷𝑏 denote the corresponding values in benign software. Thereby,
for a parameter, if it has a higher𝑇𝐷𝑚 but lower𝑇𝐷𝑏 , it may imply
malicious behavior with a high probability, while a parameter with
a lower 𝑇𝐷𝑚 and a higher 𝑇𝐷𝑏 is more likely to be benign.

Table 1: Example of Several Behavior Events And Assigned

Sensitivities in Virus:Win32/Shodi.I

Behavior Event Sensitivity

⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠2036, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠208, 𝐵𝑒𝐶𝑟𝑒𝑎𝑡𝑒𝑑 ⟩ 1
⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠2036, 𝑀𝑒𝑚𝑜𝑟𝑦, 𝐿𝑜𝑎𝑑𝐿𝑖𝑏𝑟𝑎𝑟𝑦⟩ 1

⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠2036, 𝐹𝑖𝑙𝑒, 𝑅𝑒𝑎𝑑𝐹𝑖𝑙𝑒 ⟩ 2
⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠2036, 𝑆𝑦𝑠𝑡𝑒𝑚,𝐶𝑟𝑒𝑎𝑡𝑒𝑀𝑢𝑡𝑒𝑥 ⟩ 2
⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠2036, 𝐹𝑖𝑙𝑒,𝑊 𝑟𝑖𝑡𝑒𝑃𝐸𝐹𝑖𝑙𝑒 ⟩ 3

⟨𝑃𝑟𝑜𝑐𝑒𝑠𝑠1928, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘,𝑄𝑢𝑒𝑟𝑦𝐷𝑁𝑆 ⟩ 3

For the behavior events uncovered by the statistics-based tech-
nique, we utilize a clustering-based technique to further evaluate
their sensitivity. Specifically, we make the involved parameters of
each behavior event compose a document (d), in which each param-
eter is a string. Therefore, we can formalize the parameter clustering
as short text clustering and utilize the powerful GSDMM [62] to
achieve the purpose. Finally, with the statistics-based and clustering-
based techniques, the entire malware behavior events space is cov-
ered, and they can be divided into K (i.e., K = 3) categories following
their run-time parameters, which completely correspond to the be-
nign, sensitive, and malicious three types in Table 1.

3.2.2 Sensitivity Heterogeneous Graph Construction. Given the
behavior events of the target malware after sensitivity grading,
A2-CLM extracts 7 types of malware objects (i.e., process, API,
file, system, registry, memory, and network), 8 types of interac-

tive relationships (i.e., 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑓 𝑜𝑟𝑘
−−−−→ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 , 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝑐𝑎𝑙𝑙−−−→ 𝐴𝑃𝐼 ,
𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝑎𝑐𝑐𝑒𝑠𝑠−−−−−→ 𝐹𝑖𝑙𝑒 , 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑜𝑝𝑒𝑛
−−−−→ 𝑆𝑦𝑠𝑡𝑒𝑚, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝑐𝑜𝑛𝑛𝑒𝑐𝑡−−−−−−−→
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 , 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝑟𝑒𝑎𝑑−−−−→ 𝑀𝑒𝑚𝑜𝑟𝑦, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
𝑠𝑒𝑡−−−→ 𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑦, and

𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑−−−−−−−−−→ 𝐹𝑖𝑙𝑒), and 3 types of sensitivity (i.e., benign,

sensitive, and malicious) from them, which can roundly character-
ize the attack patterns of few-shot malware. Then, starting with
the target process node Tar, we insert the event 𝑒𝑖 into SHGFM,
where 𝑒𝑖 .𝑁𝑒𝑖 ∈ V. Eventually, we obtain the fine-grained sensitivity
heterogeneous graph𝐺𝑜 of the target malware, which represents
as the adjacency matrix A𝑜 and sensitivity attribute matrix S𝑜 .

3.3 Adversarial Heterogeneous Graph

Augmentation

Clearly, the performance of contrastive learning is heavily depen-
dent on the design of positive and negative instance pairs, and
improper choice of data augmentation can degrade downstream per-
formance [23, 59]. Unfortunately, prior graph contrastive learning
efforts highlight the generation of trivial augmented instances for
homogeneous graph-structured data by randomly adding or delet-
ing nodes or edges [39, 59], which are not applicable to malware
heterogeneous graph instances due to neglecting the nonlinear de-
pendencies of various heterogeneous entities. Hence, to puzzle out
Issue2, we prefer to implement adversarial heterogeneous graph
augmentation to compensate for the limitation of the existing graph
contrastive learning by generating more challenging positive pairs
and effective negative pairs, which is beneficial to improving the
model’s robustness by investigating the adversarial attack derived

2023-01-18 06:12. Page 4 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A2-CLM : Few-shot Malware Detection Based on Adversarial Heterogeneous Graph Augmentation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

A1

A2 P1

R1

P2

F2
F1

M1

A1

A2 P1

R1

P2

F2
F1

M1

(a) PGD Attack

A1

A2 P1

R1

P2

F2
F1

M1

0

0

0

0

(b) Attribute Masking Attack (c) Meta-graph-guide Sampling Attack

P1 P2

F2

(d) Direct System Calls Attack

A1

A2 P1

R1

P2

F2
F1

M1

x

x

(e) Obfuscation Attack

A1

A2 P1

R1

P2

F2
F1

M1
A4

A3
x add add

Original Malware Instance

Attribute-level Adversarial Augmentation Structure-level Adversarial Augmentation

Figure 5: Five types of adversarial heterogeneous graph augmentations. (a) PGD Attack; (b) Attribute Masking Attack; (c)

Meta-graph-guide Sampling Attack; (d) Direct System Calls Attack; (e) Obfuscation Attack.

from malware domain knowledge. Concretely, as shown in Figure 5,
we design five malware adversarial heterogeneous graph augmenta-
tions by modifying graph structure (i.e., structure-level adversarial
augmentation) and node attributes (i.e., attribute-level adversarial
augmentation), including the PGD attack, attribute masking attack,
meta-graph-guide sampling attack, direct system calls attack, and
obfuscation attack, which can be utilized to train a robust graph
contrastive learning model for few-shot malware detection.

3.3.1 PGD Attack. To perform the transformations on the sensitiv-
ity attribute matrix S, we first project the attributed features of all
nodes in SHGFM to a common space since nodes in SHGFM have
different types. Formally, for each node 𝑣𝑥 ∈ V with type 𝑇𝑥 ∈ T
and sensitivity attribute feature 𝑠𝑥 ∈ S, the projection function g(·)
is defined as follows:

𝑠′𝑥 = 𝑔(𝑠𝑥) = 𝑠𝑥𝑊𝑇𝑥 , (2)

where 𝑠′𝑥 is the transformed node sensitivity attribute feature, and
𝑊𝑇𝑥 is the projection weight matrix for node type 𝑇𝑥 (T = 7).

As shown in Figure 5(a), with the processed 𝑠′𝑥 , we apply the
project gradient descent (PGD) attack [32] to infuse perturbation 𝛿

into the node sensitivity attribute features of SHGFM. Concretely,
the attribute feature attacked by PGD can be denoted as

𝑠′𝑥 = 𝑠′𝑥 + 𝛿, (3)

where the perturbation 𝛿 can be optimized as follows:

𝛿 = 𝑎𝑟𝑔 𝑚𝑎𝑥 ∥𝛿 ′ ∥𝑛≤𝜖 L (𝜃, 𝑠′𝑥 + 𝛿 ′), (4)

where ∥ · ∥𝑛 denotes the 𝑙𝑛-norm distance metric, 𝜖 is the perturba-
tion budget, 𝜃 is the model parameters, and L is the contrastive loss
function. Finally, we obtain the first kind of augmented instance
𝐺𝑜
𝑝.1=(V , E, S + 𝛿) of the original few-shot malware instance 𝐺𝑜 .

3.3.2 Attribute Masking Attack. The attribute masking attack is
another attribute-level adversarial augmentation, as shown in Fig-
ure 5(b). Encouraged by the significant effect of node attribute

masking on homogeneous graphs [63], we extend it to heteroge-
neous graphs to generate more elegant positive instances for few-
shot malware by performing the transformation on the processed
sensitivity attribute matrix So. Formally, we have

H𝑚𝑎𝑠𝑘 (S′𝑜) = S𝑜 ∗ (1 − L𝑚) + V ∗ L𝑚, (5)

where ∗ is the element-wise multiplication; L𝑚 denotes the masking
location matrix, and V∼ N (𝜇, 𝜎2) denotes the masking Gaussian
noise. Ultimately, we obtain the second kind of augmented instance
𝐺𝑜
𝑝.2=(V , E, S′) of the original malware instance 𝐺𝑜 .

3.3.3 Meta-graph-guide Sampling Attack. An effective method to
generate augmented instances is sampling. Different from the sampling-
based data augmentation on homogeneous graphs (e.g., ego-net
sampling [63] or uniform sampling [59]), we design a tailored meta-
graph-guide sampling attack for heterogeneous graphs, which fol-
lows certain semantics to sample from the global heterogeneous
graph. Specifically, as illustrated in Figure 5(c), given the pre-defined
meta-graphM𝑖 and𝐺𝑜 , the meta-graph sampled neighborhood N(𝑖)

is:

𝑁 (𝑖) = {𝑁𝑒𝑖 | (𝑁𝑒𝑖,𝑇𝑎𝑟) ∈ 𝑀𝑖 , (𝑇𝑎𝑟, 𝑁𝑒𝑖) ∈ 𝑀𝑖 }, (6)

where N(𝑖) contains all visited neighbor nodes Nei when the target
process node Tar walks along with meta-graph M𝑖 . Eventually, we
obtain the third kind of augmented instance𝐺𝑜

𝑝.3= (𝑁 (𝑖) , E (𝑖) , S(𝑖))
of the original few-shot malware instance 𝐺𝑜 .

3.3.4 Direct System Calls Attack. To evade sandbox surveillance,
more and more malware uses direct system calls to evade API hooks.
In general, new malware variants generated by such methods do
not call the APIs inside ntdll.dll, so the sandboxes or monitors
fail to perceive the malicious activity [18]. To accomplish this, we
propose a direct system call attack to generate a practical aug-
mented instance for few-shot malware. Concretely, we remove

2023-01-18 06:12. Page 5 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

some key APIs (e.g., NtAdjustPrivilegesToken, NtWriteVirtualMem-
ory, NtDeleteValueKey, and so on) from the original malware be-
havior events to perform a direct system call attack. In this way,
we obtain the fourth kind of augmented instance𝐺𝑜

𝑝.4 = (V −V𝑎𝑝𝑖 ,
E ⊆ (V −V𝑎𝑝𝑖) × (V −V𝑎𝑝𝑖), SV−V𝑎𝑝𝑖

) of the original few-shot
malware instance 𝐺𝑜 .

3.3.5 Obfuscation Attack. Another variant generation method is
obfuscation attack, which employs code obfuscation techniques to
conceal the original malicious behavior with semantically equiv-
alent but different behavior, thus automatically mistaking similar
malware samples within one family for samples from a different
family [6]. For example, the malicious API operation CopyFileEx
shown in Figure 5(e) can be replacedwith several benign or sensitive
API operations, including NtOpenFile, NtReadFile, and NtWriteFile.

Specifically, inspired by [34], we propose two obfuscation attacks
to generate practical augmented instances for few-shot malware:
(1) replace an API call sequence with its equivalent, and (2) insert
redundant data flow dependent API calls. In addition, our presented
obfuscation attacks can ensure that the graph editing distance [7]
between the original malware instance and the augmented instance
is as large as possible without affecting the semantics, which is more
conducive to promoting the performance of contrastive learning.

Formally, the distance between the original malware instance
𝐺𝑜 and the fifth kind of augmented instance 𝐺𝑜

𝑝.5 = (V + V𝑎𝑝𝑖 ,
E ⊆ (V +V𝑎𝑝𝑖) × (V +V𝑎𝑝𝑖), SV+V𝑎𝑝𝑖

) is defined as

𝑑 (𝐺𝑜 ,𝐺𝑜𝑝.5) = 1 −
|𝑚𝑐𝑠 (𝐺𝑜 ,𝐺𝑜𝑝.5) |
𝑚𝑎𝑥 (|𝐺𝑜 |, |𝐺𝑜𝑝.5 |)

, (7)

where𝑚𝑐𝑠 (𝐺𝑜 ,𝐺𝑜𝑝.5) denotes the maximal common sub-graph of
𝐺𝑜 and 𝐺𝑜

𝑝.5. |𝐺𝑜 | and |𝐺𝑜
𝑝.5 | represent the number of nodes in 𝐺𝑜

and 𝐺𝑜
𝑝.5, respectively.

Ultimately, Figure 5 shows five types of augmented instances of
the original malware instance; A2-CLM combines each augmented
instance and the original instance into a positive pair, which takes
the form (𝐺𝑜 ,𝐺𝑜𝑝.𝑚). Moreover, A2-CLM randomly chooses the soft-
ware instance (e.g., benign software) from the rest of the software
types as the negative pair, which forms (𝐺𝑜 , 𝐺𝑜𝑞.𝑛).

3.4 Contrastive Learning-based Malware

Detection

A properly contrastive discriminator will act on multiple positive
and negative instances pairs, which detects few-shot malware by
gradually learning the “distinguishable” information of different in-
stance pairs in a self-supervised manner. Notably, to answer Issue3,
A2-CLM contrasts the graph-level representations of various in-
stance pairs. As shown in Figure 4(c), A2-CLM holds out to capture
the similarity between the original malware instance 𝐺𝑜 and the
adversarial augmented instance 𝐺𝑝 , simultaneously, capture the
dissimilarity between 𝐺𝑜 and the sampled negative instance 𝐺𝑞 .

Concretely, in this subsection, we first employ graph attention
networks (GATs)[51], a powerful graph neural network that has
been shown to be superior to GCN [26] and GraphSAGE [21], to
learn the graph-level representations of each pair of contrastive
instances. Formally, given the original malware instance 𝐺𝑜 , m
adversarial augmented positive instances set 𝐺𝑜

𝑃
, and n sampled

negative instances set 𝐺𝑜
𝑄
, we implement three graph encoders,

𝐺𝐴𝑇𝑜 ,𝐺𝐴𝑇𝑝 , and𝐺𝐴𝑇𝑞 , to generate the comprehensive representa-
tions of the contrastive instance pairs through the following steps:

1)Aggregate node-level representationh𝑇𝑎𝑟 :Wefirst acquire
the node-level representations h𝑇𝑎𝑟 of the target process node Tar
in 𝐺𝑜 by iteratively aggregating its own features with those of its
important neighbors. Formally, the attention weight 𝛼 (𝑖)

𝑇𝑎𝑟,𝑁𝑒𝑖
of

the neighbor node Nei can be defined as:

𝛼
(𝑖)
𝑇𝑎𝑟,𝑁𝑒𝑖

=
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑇 [𝑋𝑇𝑎𝑟 , 𝑋𝑁𝑒𝑖] + b))∑

𝑁𝑒𝑖′∈𝑁 (𝑖)
𝑇𝑎𝑟

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (W𝑇 [𝑋𝑇𝑎𝑟 , 𝑋𝑁𝑒𝑖] + b))
, (8)

where 𝑋𝑇𝑎𝑟 and 𝑋𝑁𝑒𝑖 are the feature vectors of node Tar and Nei.
𝑁

(𝑖)
𝑇𝑎𝑟

is the neighborhood of the process node Tar guided by meta-
graph𝑀𝑖 . Then, the k-th layer of the node-level aggregator is:

h(𝑖) (𝑘)
𝑇𝑎𝑟

=𝑀𝐿𝑃 (𝑘) ((1+𝜖 (𝑘))h(𝑖) (𝑘−1)
𝑇𝑎𝑟

+
∑︁

𝑁𝑒𝑖∈𝑁 (𝑖)
𝑇𝑎𝑟

𝛼
(𝑖)
𝑇𝑎𝑟,𝑁𝑒𝑖

h
(𝑖) (𝑘−1)
𝑁𝑒𝑖

),

(9)

where k ∈ {1, 2,. . . , K} denotes the index of the layer, h(𝑖) (𝑘−1)
𝑇𝑎𝑟

and h(𝑖) (𝑘−1)
𝑁𝑒𝑖

are the node-level representations of target process
node Tar and corresponding neighbor node Nei at the (k-1)-th layer,
respectively. 𝜖𝑘 is a trainable balance parameter. Hence, the full
node-level representation of Tar guided by meta-graph𝑀𝑖 is:

h(𝑖)
𝑇𝑎𝑟

= 𝐶𝑂𝑁𝐶𝐴𝑇 ([h(𝑖) (𝑘)
𝑇𝑎𝑟

]𝐾
𝑘=1) . (10)

2) Aggregate graph-level representation h𝐺𝑜
: We then as-

pire to aggregate different node representations into graph em-
bedding space. Similarly, to evaluate the significance of different
meta-graphs, we insist on computing the meta-graph attention
weight 𝜃𝑖 of each M𝑖 and obtaining the comprehensive graph-level
representation h𝐺𝑜

of the target few-shot malware. Formally,

𝜃𝑖 =
𝑒𝑥𝑝 (𝜎 (b[W𝑏h

(𝑖)
𝑇𝑎𝑟

∥W𝑏h
(𝑗)
𝑇𝑎𝑟

]))∑
𝑔∈ |𝑀 | 𝑒𝑥𝑝 (𝜎 (b[W𝑏h

(𝑖)
𝑇𝑎𝑟

∥W𝑏h
(𝑔)
𝑇𝑎𝑟

]))
, (11)

h𝐺𝑜
=

|𝑀 |∑︁
𝑖=1

𝜃𝑖 × h
(𝑖)
𝑇𝑎𝑟

, (12)

where i ≠ j ∈ {1,. . . , |M|}, and 𝜎 is the activation function. b is the
weight vector from the input layer to the hidden layer of the neural
network, andW𝑏 is the corresponding weight matrix.

Empirically, we implement a non-linear projection head [10] to
the graph-level representation h𝐺𝑜

before computing the pair-wise
similarity, which is calculated by:

z𝐺𝑜
= 𝑀𝐿𝑃 (h𝐺𝑜

) . (13)

Ultimately, we keep a mini-batch B𝑜 of n negative instances (𝐺𝑜𝑞.1,
· · · , 𝐺𝑜𝑞.𝑛) drawn at random from the rest of the software families
and a positive instance 𝐺𝑜𝑝 . From a dictionary look-up perspective,
we aim to identify the unique pair of positive instances (denoted by
(𝐺𝑜 , 𝐺𝑜𝑝)) in B𝑜 , and the loss function InfoNCE [36] is defined as:

𝑙𝑜,𝑝 =
𝑒𝑥𝑝 (𝑠𝑖𝑚 (z𝐺𝑜 , z𝐺𝑜

𝑝
)/𝜏)

𝑒𝑥𝑝 (𝑠𝑖𝑚 (z𝐺𝑜 , z𝐺𝑜
𝑝
)/𝜏) +

𝑛∑
𝑑=1

𝑒𝑥𝑝 (𝑠𝑖𝑚 (z𝐺𝑜 , z𝐺𝑜
𝑞.𝑑

)/𝜏)
, (14)

2023-01-18 06:12. Page 6 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A2-CLM : Few-shot Malware Detection Based on Adversarial Heterogeneous Graph Augmentation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Algorithm 1 The Overall Procedure of A2-CLM
Input: A sensitivity heterogeneous graph of the target malware

instance𝑜 : 𝐺𝑜=(A𝑜 , S𝑜), Adversarial augmentations: H𝑃𝐺𝐷 ,
H𝑚𝑎𝑠𝑘 , H𝑠𝑎𝑚𝑝𝑙𝑒 , H𝐷𝑆𝐶 , H𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑖𝑜𝑛 , Encoders: GAT𝑜 ,
GAT𝑝 , GAT𝑞 , Projection heads: MLP𝑜 , MLP𝑝 , MLP𝑞 , m, n;

Output: Trained GAT𝑜 , GAT𝑝 , GAT𝑞 , MLP𝑜 , MLP𝑝 , MLP𝑞 ;
1: Go

P = (𝐺𝑜
𝑝.1, 𝐺

𝑜
𝑝.2, · · · , 𝐺

𝑜
𝑝.𝑚) = H𝑃𝐺𝐷 (𝐺𝑜) ∪ H𝑚𝑎𝑠𝑘 (𝐺𝑜)

∪ H𝑠𝑎𝑚𝑝𝑙𝑒 (𝐺𝑜) ∪ H𝐷𝑆𝐶 (𝐺𝑜) ∪ H𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑖𝑜𝑛(𝐺𝑜);
2: G𝑜

𝑄
= (𝐺𝑜

𝑞.1,𝐺
𝑜
𝑞.2, · · · ,𝐺

𝑜
𝑞.𝑛) = sampling the negative instances

from the rest of software families;
3: for {𝐺𝑜𝑝.𝑎}𝑚𝑎=1 ∈ G𝑜

𝑃
do

4: B𝑜 = 𝐺𝑜𝑝.𝑎 ∪ G𝑜
𝑄
;

5: h𝐺𝑜
= GAT𝑜 (𝐺𝑜);

6: z𝐺𝑜
= MLP𝑜 (h𝐺𝑜

);
7: h𝐺𝑜

𝑝.𝑎
= GAT𝑝 (𝐺𝑜𝑝.𝑎);

8: z𝐺𝑜
𝑝.𝑎

= MLP𝑝 (h𝐺𝑜
𝑝.𝑎

);
9: for {𝐺𝑜

𝑞.𝑑
}𝑛
𝑑=1 ∈ B𝑜\{𝐺𝑜𝑝.𝑎} do

10: h𝐺𝑜
𝑞.𝑑

= GAT𝑞 (𝐺𝑜𝑞.𝑑);
11: z𝐺𝑜

𝑞.𝑑
= MLP𝑞 (h𝐺𝑜

𝑞.𝑑
);

12: end for

13: Computing l𝑜,𝑝.𝑎 by using Eq. 14;
14: end for

15: for a = 1 to m do

16: L= 1
𝑚

∑𝑚
𝑎=1 𝑙𝑜,𝑝.𝑎 ;

17: end for

18: Updating 𝐼𝑜 by maximizing L with backpropagation;
19: 𝐼𝑝=𝜆1 ∗ 𝐼𝑝+(1-𝜆1)∗𝐼𝑜 ;
20: 𝐼𝑞=𝜆2 ∗ 𝐼𝑞+(1-𝜆2)∗𝐼𝑜 ;
21: return GAT𝑜 , GAT𝑝 , GAT𝑞 , MLP𝑜 , MLP𝑝 , MLP𝑞

where z𝐺𝑜
, z𝐺𝑜

𝑝
, and z𝐺𝑜

𝑞.𝑑
denote the low-dimensional represen-

tations of 𝐺𝑜 , 𝐺𝑜𝑝 , and 𝐺𝑜
𝑞.𝑑

after GAT encoders and non-linear
projection heads, respectively. 𝜏 denotes a preset temperature pa-
rameter. Hence, the final loss L is computed across all positive and
negative instance pairs, and it is formalized as:

L =
1
𝑚

𝑚∑︁
𝑝=1

𝑙𝑜,𝑝 . (15)

The contrastive loss is then used to train the graph encoders
GAT𝑜 , GAT𝑝 , GAT𝑞 , as well as the projection heads MLP𝑜 , MLP𝑝 ,
MLP𝑞 . Inspired by the momentum strategy [24], we tactfully fine-
tune the parameters 𝐼𝑜 of GAT𝑜 or MLP𝑜 by backpropagation and
then momentum-based update the rest parameters of GAT𝑝 (or
MLP𝑝) and GAT𝑞 (or MLP𝑞) by utilizing the 𝐼𝑜 when training mul-
tiple graph encoders and projection heads. The pseudocode of A2-
CLM is depicted in Algorithm 1.

4 EXPERIMENTS

In this section, we conduct ample experiments to show the effective-
ness of A2-CLM on sufficient malware detection tasks and few-shot
malware detection tasks. We first introduce the four datasets used
for experiments and the experiment setup. Then, we demonstrate
the experimental results, including the comparison of performance,

parameter sensitivity, unknown malware detection, ablation study,
and robustness against packed malware.

4.1 Dataset and Baseline Methods

4.1.1 Dataset. We evaluate A2-CLM on four real-world malware
benchmark datasets, including BIG 2015 [41], Ember [2], API Call
Sequences [42], and ACT-KingKong [29], which are widely used in
recent malware detection research. Detailed statistics are shown in
Table 2, and the detailed descriptions are given as follows:

• BIG 2015 contains 10,868 malware files from 9 malware
families and various features (such as function calls, strings,
etc.) extracted from the binary by the IDA disassembler tool.

• Ember is a realistic dataset with 50% malicious software
and 50% benign software that contains eight groups of raw
features from 140,000 PE files.

• API Call Sequences includes the first 100 API sequences of
37,784 malware samples and 1,079 benign samples that are
collected in a sandboxed environment, which is constantly
used in Kaggle competitions and dynamic detection research.

• ACT-KingKong contains execution reports of 8,494 mali-
cious files and 3,042 benign files from Mar 2019 to Oct 2019,
and each report contains 8 types of malware objects, includ-
ing processes, files, networks, memories, registries, systems,
mutexes, and attributes. To identify few-shot malware from
different families, we submitted the hash value of each file
to VirusTotal1 and counted 102 distinct malware families.

For all datasets, we randomly divided all categories into 6:2:2 for
the training set, validation set, and test set, respectively.

4.1.2 Baseline Methods. We make comparisons with the following
state-of-the-art baselines:

• MalConv [40] is a CNN-based detection model that can
learn the spatial features between the byte sequences of
malware.

• CNN+BPNN [64] is a hybrid framework that employs CNN
and BPNN to extract opcode features and API features.

• MatchGNet [55] is a GNN-based model that characterizes
the execution events of malware into a heterogeneous graph
and extracts metapath-based features to detect malware.

• MG-DVD [29] is a dynamic detection framework that incre-
mentally learns graph embedding by utilizing the overlap-
ping information of adjacent sliding windows.

• API+AAE [37] is a generative model that proposes an ad-
versarial auto-encoder (AAE) for malware detection.

• GraphCL [63] is a pre-training framework that uses sub-
graph instance discrimination to distinguish between similar
and dissimilar few-shot instances.

• GACL [47] is a GCN-based model that adopts adversarial
learning and contrastive learning.

4.2 Experimental Settings

We train A2-CLM on a machine with a 16 cores Intel(R) Core(TM)
i7-6700 CPU @3.40 GHz with 64 GB RAM and 4×NVIDIA Tesla
K80 GPU. All of the experiments developed with Python 3.6 are
executed on the TensorFlow-GPU framework supported by Ubuntu
1https://www.virustotal.com.

2023-01-18 06:12. Page 7 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Statistics of The Four Datasets

Dataset Samples Distribution Network Size

BIG 2015

Ramnit Lollipop Kelihos_ver3 Vundo Simda Tracur Kelihos_ver1 Obfuscator.ACY Gatak Avg. # Node Avg. # Degree
1,541 2,478 2,942 475 42 751 398 1,228 1,013 153.3 1.04

API Call Sequences

Trojan Downloader Virus Spyware Adware Dropper Worm Backdoor Benign Avg. # Node Avg. # Degree
12,824 6,560 5,522 5,897 4,449 945 808 779 1,079 84.1 1.29

Ember

Malware Benign - - - - - - - Avg. # Node Avg. # Degree
69,860 70,140 - - - - - - - 16.8 1.84

ACT-KingKong

Trojan Virus Worm Backdoor Downloader Ransom Dropper Benign - Avg. # Node Avg. # Degree
4,536 1,606 842 660 394 338 118 3,042 - 23.7 3.61

(# Family) 42 17 20 12 4 3 4 1 - - -

Table 3: Performance on Malware Detection

Method ACT-KingKong dataset Ember dataset BIG 2015 dataset API Call Sequences dataset

Recall Precision ACC F1-score Recall Precision ACC F1-score Recall Precision ACC F1-score Recall Precision ACC F1-score

MalConv [40] 83.32 90.85 84.31 86.92 90.32 92.68 91.55 91.48 95.95 97.28 96.15 96.61 80.58 81.19 80.64 80.88
CNN+BPNN [64] 87.36 91.95 88.29 89.60 92.88 93.52 93.23 93.20 97.26 97.94 97.31 97.60 83.71 84.09 83.73 83.90

MatchGNet [55] 91.37 93.72 91.71 92.53 94.03 96.48 95.35 95.24 97.51 98.02 97.55 97.76 86.82 87.13 86.85 86.97
MG-DVD [29] 96.51 98.16 97.63 97.33 94.87 97.02 95.94 95.93 97.83 98.44 97.83 98.13 86.97 88.28 86.99 87.62

API+AAE [37] 90.28 91.93 90.29 91.10 92.95 95.29 94.16 94.11 96.15 96.71 96.18 96.43 82.66 84.07 83.97 83.36
GraphCL [63] 94.46 94.96 94.47 94.71 93.76 94.83 93.97 94.29 97.54 98.06 97.58 97.80 85.23 85.54 85.23 85.38
GACL [47] 97.35 97.73 97.68 97.54 96.62 97.56 96.69 97.09 98.22 98.43 98.21 98.32 88.15 88.72 88.19 88.43

A2-CLM (ours) 98.87 99.04 98.87 98.95 99.21 99.66 99.28 99.43 99.69 99.85 99.70 99.77 94.22 95.06 94.25 94.64

% Improvement 1.52% 1.31% 1.19% 1.41% 2.59% 2.10% 2.59% 2.34% 1.47% 1.42% 1.49% 1.45% 6.07% 6.34% 6.06% 6.21%

16.0.4 operating system. We measure the performance of A2-CLM
in terms of recall, precision, ACC, F1-score, and AUC.

We utilize Adam [25] for optimization with the learning rate of
0.005, decay of 0.00001, mini-batch size of 64, temperature 𝜏 = 0.07,
embedding size of 128, number of layers of GAT to 4, and momen-
tum 𝜆1=𝜆2= 0.99.

4.3 Few-shot Malware Detection Results

4.3.1 Effectiveness Evaluation. In this subsection, we evaluate the
detection performance of A2-CLM on the sufficient malware sam-
ples tasks as well as the few-shot malware tasks. We run our pro-
posed framework 10 times and report the average results in Table 3
and Table 4. The experimental results show that our proposed A2-
CLM outperforms all baseline methods in terms of all evaluation
metrics, especially in the 1-shot task and 10-shot task. In fact, the
improvement of A2-CLM can be attributed to the following traits:

First, compared with the feature-based supervised learning de-
tection methods, such as MalConv and CNN+BPNN, our proposed
A2-CLM achieves more than 2.39%∼10.58% improvement in terms
of ACC on the sufficient malware samples tasks and more than
33.87%∼47.62% improvement in terms of ACC on the 1-shot mal-
ware tasks. These experimental results mainly contribute to the
fact that A2-CLM not only models the various malware objects and
their interactions into heterogeneous graphs to capture the context
structure semantics of few-shot malware but also employs graph

attention networks (GATs) to generate the fine-grained graph-level
representations, which is beneficial to improving the detection
performance of A2-CLM.

Second, on sufficiently large malware sample tasks, the detec-
tion performances of the existing graph-based supervised learning
malware detection methods, such as MatchGNet and MG-DVD, are
close to that of A2-CLM. This is because they ingeniously leverage
graph neural networks (GNNs) to capture the high-order seman-
tic information from a large quantity of malware samples, which
can better express the evolving patterns of the malware. They do
poorly on 1-shot tasks, however, because they rely on a large cor-
pus of labeled samples to train the model in a supervised manner.
Differently, our proposed A2-CLM no longer concentrates on la-
beling information but is equipped with the capability to learn
more discriminative and robust few-shot malware fingerprints by
self-supervised contrastive learning.

Third, compared with the most relevant self-supervised works
involving API+AAE, GraphCL, and GACL, the advantages of A2-
CLM are twofold. On the one hand, API+AAE only extracts the
isolated API features, and its detection performance heavily de-
pends on the generated adversarial samples and whether they con-
tain sufficient detail. Contrarily, A2-CLM is capable of recognizing
few-shot malware by investigating the approximate discriminative
patterns based on the semantically rich sensitivity heterogeneous
graph instances. On the other hand, although GraphCL and GACL

2023-01-18 06:12. Page 8 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

A2-CLM : Few-shot Malware Detection Based on Adversarial Heterogeneous Graph Augmentation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 4: Performance on Few-shot Malware Detection

ACT-KingKong dataset Ember dataset BIG 2015 dataset API Call Sequences dataset

Method 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot

ACC F1-score ACC F1-score ACC F1-score ACC F1-score ACC F1-score ACC F1-score ACC F1-score ACC F1-score

MalConv [40] 38.24 38.71 47.36 47.42 34.55 34.59 42.16 42.66 37.64 38.09 45.88 45.85 32.86 32.90 45.37 45.63
CNN+BPNN [64] 43.85 43.89 53.05 53.11 35.72 35.78 44.37 44.36 40.91 41.28 49.63 49.61 39.28 39.75 51.66 51.71

MatchGNet [55] 50.12 50.58 57.19 57.15 40.31 40.42 50.08 50.23 46.29 46.25 53.18 53.57 47.43 47.45 57.19 57.28
MG-DVD [29] 52.50 52.59 61.77 61.73 44.27 44.71 51.82 52.09 48.53 48.50 55.92 55.95 48.52 48.69 60.74 60.72

API+AAE [37] 64.63 64.89 69.43 69.42 50.68 50.72 55.23 55.21 60.74 60.68 64.51 64.88 60.94 61.14 69.25 69.24
GraphCL [63] 67.71 67.86 71.28 71.35 60.83 61.59 64.75 64.77 68.16 68.19 71.35 71.41 63.66 63.61 70.83 70.85
GACL [47] 80.59 80.63 82.81 82.84 74.65 74.69 78.66 78.61 77.57 77.72 80.24 80.25 68.57 68.62 77.06 77.12

A2-CLM (ours) 91.47 91.54 93.74 93.89 82.44 82.48 87.19 87.15 86.81 86.79 89.47 89.52 73.15 73.22 80.58 80.65

0 500 1000 1500 2000
Training Time(ms)

AC
T-

SA
ND

BO
X

Ka
gg

le
M

alw
ar

e
BI

G
20

15
Em

be
r

D
at

as
et

MalConv
CNN+BPNN
MatchGNet

MG-DVD
API+AAE
GraphCL

GACL
A2-CLM

(a) Training Time

0 50 100 150 200
Testing Time(ms)

AC
T-

SA
ND

BO
X

Ka
gg

le
M

alw
ar

e
BI

G
20

15
Em

be
r

D
at

as
et

MalConv
CNN+BPNN
MatchGNet

MG-DVD
API+AAE
GraphCL

GACL
A2-CLM

(b) Testing Time

Figure 6: Time efficiency comparison on four datasets.

can provide promising detection frameworks in a self-supervised
contrastive learning, they only investigate oversimplified data aug-
mentations for homogeneous graphs because they ignore nonlinear
heterogeneous dependencies and lack practical malware data aug-
mentation, degrading the few-shot malware detection performance.
On the contrary, A2-CLM designs five insightful adversarial het-
erogeneous graph augmentations that make full use of adversarial
attacks and expert knowledge, enhancing the effectiveness of few-
shot malware detection.

4.3.2 Efficiency Evaluation. Here we study the time efficiency of
A2-CLM processing each sample on four datasets. The comparison
results are shown in Figure 6. We make two crucial observations.

First, from Figures 6(a-b), we can see that A2-CLM is consistently
faster than the existing homogeneous graph contrastive learning
models (i.e., GraphCL and GACL) over all datasets. The reason for
efficiency improvement is attributed to A2-CLM utilizing meta-
graph structures to guide the walk and generate positive instances
rather than uniformly sampling a lot of noise in GraphCL and
GACL, which is capable of reducing the walking cost and train-
ing cost. Second, Figures 6(a-b) also show the time overhead of
the feature-based detection methods (i.e., MalConv, CNN+BPNN,
and API+AAE) is significantly less than that of graph-based meth-
ods (i.e., MatchGNet, MG-DVD, GraphCL, GACL, and A2-CLM)
in all datasets because they do not need to consider the complex
graph structure involved with various types of malware entities

0.80

0.85

0.90

0.95

1.00

Masking Ratio

A
CC

0.1 0.3 0.5 0.7

ACT-KingKong
API Call Sequence
Ember
BIG 2015

(a) Masking ratio

0.6

0.7

0.8

0.9

1.0

Shot Numbers

A
CC

1 6 12 18 24

ACT-KingKong
API Call Sequence
Ember
BIG 2015

(b) Shot number

0.80

0.85

0.90

0.95

1.00

Momentum Value

A
CC

0 0.9 0.99 0.999 0.9999

ACT-KingKong
API Call Sequence
Ember
BIG 2015

(c) Momentum value

Figure 7: Performance change of A2-CLM with major param-

eters.

and interactive relationships, which empirically proves that the
simpler the model, the lower the time complexity.

4.4 Parameter Sensitivity

In this subsection, we investigate the sensitivity of four major
parameters on the performance of A2-CLM, including the masking
ratio of L𝑚 (i.e., r), the shot number of samples (i.e., n-shot), the
number of PGD attacks (i.e., k), and the momentum value (i.e., 𝜆).

4.4.1 Effect of Masking Ratio r. We first explore the significance of
attribute masking ratio r for the A2-CLM framework. As depicted
in Figure 7(a), with the masking ratio r growing, the ACC value
first steadily rises, which can be attributed to masking more values
in the sensitivity attribute matrix, which would produce more ro-
bust positive instances for few-shot malware contrastive learning.
Additionally, with the masking ratio growing, the improvement of
ACC in Figure 7(a) is within a certain range, which is related to the

2023-01-18 06:12. Page 9 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

(a) ACT-KingKong dataset (b) Ember dataset (c) BIG 2015 dataset (d) API Call Sequence dataset

Figure 8: The performance of A2-CLM with different numbers of PGD attacks.

Table 5: Performance on Unknown Malware Detection

Method 𝐷𝑘𝑛𝑜𝑤𝑛=𝐷𝑢𝑛𝑘𝑛𝑜𝑤𝑛=50% of the software family

Recall Precision ACC F1-score AUC

MalConv [40] 75.61 75.98 75.68 75.94 73.32
CNN+BPNN [64] 79.64 80.35 79.73 79.99 77.54

MatchGNet [55] 85.25 85.92 85.25 85.58 82.91
MG-DVD [29] 86.44 87.15 86.53 86.79 84.87

API+AAE [37] 87.28 88.10 87.34 87.69 85.95
GraphCL [63] 90.67 90.92 90.68 90.79 88.03
GACL [47] 92.06 93.13 92.11 92.59 89.28
A2-CLM 95.19 95.74 95.37 95.46 93.30

sparsity of the attribute matrix of the samples, so we experimentally
select the masking ratio r at 30% for effectiveness consideration.

4.4.2 Effect of The Shot Number n. We also investigate the im-
pact of shot number n on the performance of A2-CLM. Figure 7(b)
presents the detection accuracy of A2-CLMwhen gradually increas-
ing the shot number n on different datasets. With more samples
included in each type of all datasets, the accuracy increases obvi-
ously, as expected. Particularly, there is a 3.76%, 5.91%, 9.76%, and
10.29% increment of accuracy when the shot number is increased
from 1 to 10 in the ACT-KingKong dataset, BIG 2015 dataset, Em-
ber dataset, and API Call Sequence dataset, respectively, which
attributes to more shots included in each type and means the pro-
posed A2-CLM can learn more distinguishable information from
more instances to help distinguish new malware. In addition, as
the shot number increases, the detection performance of A2-CLM
becomes more and more gentle, indicating that A2-CLM can get
very excellent performance by adding a small number of samples.

4.4.3 Effect of The Momentum Value 𝜆. We further study the effect
of the different momentum values in the proposed A2-CLM frame-
work. Momentum 𝜆 plays an important role in training efficient
contrastive learning. Figure 7(c) shows the detection accuracy with
different momentum values on four datasets. It is worth noting that
a larger momentum value brings better performance, which shows
that the more stable and consistent the evolution of 𝜆1 and 𝜆2, the
better the performance. As shown in Figure 7(c), we can find that

an appropriate value can achieve the desired performance. Specifi-
cally, the best performance is reached when 𝜆=0.99 on the API Call
Sequence dataset, Ember dataset, and ACT-KingKong dataset.

4.4.4 Effect of The Number of PGD Attacks k. The PGD attacks
have a strong influence on generating realistic and robust con-
trastive instances. As shown in Figures 8(a-d), the ACC increases
significantly as k increases, which can be attributed to more PGD
attacks; more attribute-level adversarial instances can be obtained.
However, the higher the number of PGD attacks, the higher the
training cost. That is, the A2-CLM’s training time almost doubles
for each additional PGD attack. As a result, we use two PGD at-
tacks to maintain the trade-off between A2-CLM’s effectiveness
and efficiency.

4.5 Unknown Malware Detection

This subsection focuses on evaluating A2-CLM for unknown mal-
ware detection. To simulate unknown malware instances in the
wild or unseen new families, we randomly split all samples from
the ACT-KingKong dataset into two sets: D𝑘𝑛𝑜𝑤𝑛 = 50% of the soft-
ware families (i.e., 52 families), D𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = the remaining 50% of
the software families (i.e., 51 families). Moreover, to ensure that
each family has been in the unknown set as far as possible, we
employ k-fold cross-validation to evaluate our A2-CLM and report
the average experimental results.

We report the average detection performance of all 8 methods
on the unknown malware detection task in Table 5. All evaluation
metrics of A2-CLM outperform the state-of-the-art methods. Con-
cretely, the accuracy of A2-CLM is at least 3.26% better than base-
line methods, which is attributed to A2-CLM leveraging adversarial
augmentation-based contrastive learning to perform well on un-
known families by capturing the matching patterns and mismatch-
ing patterns via its intrinsic discriminative mechanism. On the
contrary, existing supervised learning methods, especially feature-
based detection methods, suffer a significant drop in detection per-
formance when faced with unknown families or unknown malware
because they strongly rely on known fingerprints and blacklists,
which cannot handle samples that are outside the training set.

4.6 Ablation Study

4.6.1 Sensitivity Grading Method. We first study the contribution
of the sensitivity grading method on A2-CLM. As shown in Figure 9,
the detection performance of A2-CLM is slightly superior to that of
its variant model, A2-CLM no SG, on all datasets, confirming that

2023-01-18 06:12. Page 10 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

A2-CLM : Few-shot Malware Detection Based on Adversarial Heterogeneous Graph Augmentation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

(a) ACT-KingKong dataset (b) Ember dataset (c) BIG 2015 dataset (d) API Call Sequence dataset

Figure 9: The effect of the sensitivity grading method on A2-CLM.

(a) ACT-KingKong dataset (b) Ember dataset (c) BIG 2015 dataset (d) API Call Sequence dataset

Figure 10: Accuracy gain(%) of A2-CLM when contrasting different adversarial heterogeneous graph augmentation pairs on all

datasets. “Identical” stands for a no-augmentation. The lighter color indicates better performance gains.

the security semantics implicit in run-time behavior are beneficial
to boosting the detection capability of A2-CLM. Furthermore, the
varying degrees of sensitivity allow the few-shot malware detection
results to be interpreted.

4.6.2 Adversarial Heterogeneous Graph Augmentation. We then as-
sess the role of different adversarial heterogeneous graph augmen-
tations in our A2-CLM framework. As illustrated in Figures 10(a-d),
we can discover that without any data augmentation in the con-
trastive learning, it is not helpful for the downstream few-shot mal-
ware detection tasks, judging from the value 0 of the “Identical” pair.
In contrast, from the top rows or the right columns in Figures 10(a-
d), we believe that composing different adversarial heterogeneous
graph augmentations can enhance the detection performance. Con-
cretely, when we composed “Sample" and “PGD", the maximum
accuracy gains were 7.34%, 7.04%, and 7.53% for the ACT-KingKong
dataset, Ember dataset, and BIG 2015 dataset, respectively. Similarly,
when we composed “DSC" and “Mask", the maximum accuracy gain
was 6.42% for the API Call Sequence dataset. These findings prove
that applying the same type of heterogeneous graph data augmen-
tations does not bring out the best detection performance; however,
by composing different types of adversarial heterogeneous graph
augmentations, especially at the structure-level and attribute-level,
the proposed A2-CLM can reach the best detection performance,
which avoids the learned representations overfitting.

4.6.3 Meta-graph. Finally, we investigate the impact of various
meta-graphs on the performance of few-shot malware detection
by gradually incorporating meta-graphs into our A2-CLM. In Fig-
ure 11, we can observe that by incorporating more meta-graphs,
the ACCs of A2-CLM on all datasets are higher, which empirically

Figure 11: Performance change of A2-CLM when gradually

incorporating meta-graphs in terms of ACC.

proves that diverse meta-graphs are capable of capturing the unique
semantic information and helping capture the intrinsic malicious
patterns of few-shot malware. Particularly, we can find that when
adding𝑀1,𝑀4, and𝑀6, A2-CLM has a significant boost in the ACT-
KingKong dataset; a similar situation happens when we add 𝑀1
and𝑀3 in the API Call Sequence dataset. Additionally, the detec-
tion performance has a slight improvement in the BIG 2015 dataset
and the Ember dataset, which is attributed to the fact that the mal-
ware heterogeneous graph instances in these two datasets have
fewer structures that satisfy the pre-defined meta-graphs, making
it difficult to reflect the advantages of meta-graphs in A2-CLM.

4.7 Packed Malware

Using the ACT-SANDBOX dataset’s encountered packed malware,
we tested A2-CLM’s robustness against packers. As shown in Ta-
ble 6, we consider four types of packers, whose complexity ranges

2023-01-18 06:12. Page 11 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 6: Performance on Packed Malware Detection

Packer Packer Type # Malware ACC

UPX Type-I 176 0.989
BobSoft Mini Delphi Type-I 73 0.977

ASPack Type-III 84 0.974
Armadillo Type-VI 138 0.956

from Type-I to Type-VI [16]. We see that A2-CLM can unpack and
analyze samples packed with the common packers (i.e., UPX, Bob-
Soft Mini Delphi, ASPack, and Armadillo), regardless of the Type-I
packers that can be easily unpacked only using a single unpacking
routine or the Type-VI packers that can be unpacked using a multi-
layer routine. Hence, we believe that A2-CLM is robust enough
to enable a large-scale study of packed malware. However, some
packers use virtualization [50] or repackaging [28, 43] technologies
to generate complex variants by converting software into bytecode
and evading sandbox detection. Consequently, A2-CLM cannot han-
dle the virtualization and repackaging of malware variants, which
account for a tiny fraction of packed malware [50].

5 RELATEDWORK

5.1 Malware Detection

The research on malware detection mostly focuses on supervised
learning, which leverages deep learning and even graph neural
networks to extract various static or dynamic fingerprint features
of malware. Their successes depend on handling a large number of
labeled samples. Concretely, Tian et al. [49] first adopted structured
heterogeneous information networks (HINs) for malware detec-
tion and then designed a similarity-based approach to detect the
malware. Wang et al. [55] designed MatchGNet, where the simi-
larities between the target malware and all benign samples can be
measured by leveraging meta-path-based graph representations.
Recently, Liu et al. [29] attempted to investigate the real-time detec-
tion framework based on the sliding window, which can effectively
and efficiently defend against malware attacks with two dynamic
walk-based heterogeneous graph learning methods.

However, the aforementioned methods not only ignore the secu-
rity semantics implicit in run-time behavioral parameters but also
heavily depend on a large corpus of labeled samples, limiting the
capability of few-shot malware detection.

5.2 Few-shot Malware Classification

Research on few-shot malware classification is still in its infancy.
Bai et al. [5] adopted a siamese-network method to identify the
few-shot Android malware, which extracted three types of syntac-
tic features and trained a multi-layer perceptron (MLP). Wang et
al. [53] proposed a few-shot malware dynamic analysis approach
based on meta-learning, which has the ability to classify novel
malware families that have never met. To solve the one-shot mal-
ware outbreak, Park et al. [37] developed the generative adversarial
auto-encoder (AAE) [33] for malware detection.

However, the aforementioned few-shot malware classification
methods have certain flaws. Firstly, the meta-learning-based classi-
fication method is essential to hold the memory of the previously

learned samples, which undoubtedly causes catastrophic forgetting
and new data over-fitting; Secondly, the generative model heavily
concentrates on each detail of the sample, which would cause poor
detection performance once the generated adversarial sample did
not contain enough information for matching. Conversely, our pro-
posed A2-CLM designs heterogeneous graph contrastive learning
to conquer the aforementioned limitations in few-shot malware
classification, which is capable of recognizing new few-shot mal-
ware by investigating only the approximate discriminative patterns
instead of sufficient detail.

5.3 Graph Contrastive Learning

Graph contrastive learning has been successfully applied to many
tasks [31, 59]. For example, DGI [52] first attempted to extend the
Deep InfoMax in CV to the graph data, which implemented a graph
convolutional network (GCN) as the encoder and maximized the
mutual information between input and output. Unlike DGI, which
targets learning node-level representation, Sun et al. [45] intended
to maximize the mutual information between graph-level represen-
tations. Inspired by what CMC has done to improve Deep InfoMax,
Hassani et al. [23] presented a contrastive multi-view representa-
tion learning method for graph data that adopts graph diffusion
to yield positive sample pairs. Qiu et al. [39] pioneered the use
of instance discrimination for graph pre-training. They utilized
random walks with restart (RWR) to generate independent sub-
graphs as instances and calculated the InfoNCE [36] loss, which
is friendly to large-scale graphs. You et al. [63] believed that node
neighborhood reconstruction is a local-global contrast and that em-
phasizing neighborhood information over structural information
would destroy structural information. Therefore, they proposed
four augmentation methods based on homogeneous graphs to pro-
duce the positive samples, which achieve better performance on
dissimilar datasets.

However, the existing data augmentation of the aforementioned
graph contrastive learning methods emphasizes generating aug-
mented instances for homogeneous graphs, which are feeble for
malware heterogeneous graphs due to their neglecting the het-
erogeneous dependencies of various malware entities. To address
this problem, our A2-CLM proposes to generate more practical
contrastive pairs by investigating five types of adversarial hetero-
geneous graph augmentation, which is beneficial to improving the
model’s robustness and enhancing the effectiveness of few-shot
malware detection.

6 CONCLUSION

In this paper, we propose a novel few-shot malware detection model
named A2-CLM, which overcomes the label scarcity issue by im-
plementing self-supervised graph contrastive learning. A2-CLM
combines sensitivity heterogeneous graphs and adversarial data
augmentations to detect malware efficiently and robustly. Our eval-
uation has verified the superiority of our proposed A2-CLM in
identifying few-shot malware tasks.

REFERENCES

[1] Sahar Abdelnabi, Katharina Krombholz, and Mario Fritz. 2020. VisualPhishNet:
Zero-Day Phishing Website Detection by Visual Similarity. In Proceedings of the

2023-01-18 06:12. Page 12 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

A2-CLM : Few-shot Malware Detection Based on Adversarial Heterogeneous Graph Augmentation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

2020 ACM SIGSAC Conference on Computer and Communications Security (CCS
’20). 1681–1698.

[2] Hyrum S Anderson and Phil Roth. 2018. Ember: an open dataset for training
static pe malware machine learning models. arXiv preprint arXiv:1804.04637
(2018).

[3] Anshul Arora, Sateesh Kumar Peddoju, and Mauro Conti. 2020. PermPair: An-
droid Malware Detection Using Permission Pairs. IEEE Trans. Inf. Forensics Secur.
15 (2020), 1968–1982. https://doi.org/10.1109/TIFS.2019.2950134

[4] AvTest. 2020. Malware Statistics. https://www.av-test.org/en/statistics/malware/.
[5] Yude Bai, Zhenchang Xing, Xiaohong Li, Zhiyong Feng, and Duoyuan Ma. 2020.

Unsuccessful story about few shot malware family classification and siamese
network to the rescue. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 1560–1571.

[6] Jean-Marie Borello and Ludovic Mé. 2008. Code obfuscation techniques for
metamorphic viruses. Journal in Computer Virology 4, 3 (2008), 211–220.

[7] Horst Bunke and Kim Shearer. 1998. A graph distance metric based on the
maximal common subgraph. Pattern recognition letters 19, 3-4 (1998), 255–259.

[8] Tanmoy Chakraborty, Fabio Pierazzi, and VS Subrahmanian. 2017. Ec2: Ensem-
ble clustering and classification for predicting android malware families. IEEE
Transactions on Dependable and Secure Computing 17, 2 (2017), 262–277.

[9] Li Chen, Mingwei Zhang, Chih-Yuan Yang, and Ravi Sahita. 2017. POSTER: semi-
supervised classification for dynamic android malware detection. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’17). 2479–2481.

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. 1597–1607.

[11] Xiaohui Chen, Zhiyu Hao, Lun Li, Lei Cui, Yiran Zhu, Zhenquan Ding, and Yongji
Liu. 2022. CruParamer: Learning on Parameter-Augmented API Sequences for
Malware Detection. IEEE Transactions on Information Forensics and Security 17
(2022), 788–803.

[12] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2020.
Electra: Pre-training text encoders as discriminators rather than generators. arXiv
preprint arXiv:2003.10555 (2020).

[13] Daniele Cono D’Elia, Emilio Coppa, Federico Palmaro, and Lorenzo Cavallaro.
2020. On the Dissection of Evasive Malware. IEEE Trans. Inf. Forensics Secur. 15
(2020), 2750–2765. https://doi.org/10.1109/TIFS.2020.2976559

[14] Yujie Fan, Shifu Hou, Yiming Zhang, Yanfang Ye, and Melih Abdulhayoglu. 2018.
Gotcha-sly malware! scorpion a metagraph2vec based malware detection system.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 253–262.

[15] Ruitao Feng, Sen Chen, Xiaofei Xie, Guozhu Meng, Shang-Wei Lin, and Yang
Liu. 2021. A Performance-Sensitive Malware Detection System Using Deep
Learning on Mobile Devices. IEEE Trans. Inf. Forensics Secur. 16 (2021), 1563–1578.
https://doi.org/10.1109/TIFS.2020.3025436

[16] Jonathan Fuller, Ranjita Pai Kasturi, Amit Sikder, Haichuan Xu, Berat Arik, Vivek
Verma, Ehsan Asdar, and Brendan Saltaformaggio. 2021. C3PO: Large-Scale
Study of Covert Monitoring of C&C Servers via Over-Permissioned Protocol
Infiltration. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 3352–3365.

[17] José Gaviria de la Puerta and Borja Sanz. 2017. Using Dalvik opcodes for malware
detection on Android. Logic Journal of the IGPL 25, 6 (2017), 938–948.

[18] H. Gavriel. 2018. Malware Mitigation When Direct System Calls Are
Used. https://www.cyberbit.com/blog/endpoint-security/malware-mitigation-
when-direct-system-calls-are-used/.

[19] Samujjwal Ghosh and Maunendra Sankar Desarkar. 2018. Class Specific TF-
IDF Boosting for Short-text Classification: Application to Short-texts Generated
During Disasters. In Companion of the The Web Conference 2018 on The Web
Conference 2018, WWW 2018, Lyon , France, April 23-27, 2018, Pierre-Antoine
Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.).
ACM, 1629–1637. https://doi.org/10.1145/3184558.3191621

[20] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own la-
tent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733
(2020).

[21] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems. 1025–1035.

[22] Weijie Han, Jingfeng Xue, Yong Wang, Lu Huang, Zixiao Kong, and Limin Mao.
2019. MalDAE: Detecting and explaining malware based on correlation and
fusion of static and dynamic characteristics. computers & security 83 (2019),
208–233.

[23] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-
resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116–4126.

[24] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Momen-
tum contrast for unsupervised visual representation learning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9729–9738.
[25] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[26] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).
[27] Lingpeng Kong, Cyprien de Masson d’Autume, Wang Ling, Lei Yu, Zihang Dai,

and Dani Yogatama. 2019. A mutual information maximization perspective of
language representation learning. arXiv preprint arXiv:1910.08350 (2019).

[28] Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019. Rebooting research on
detecting repackaged android apps: Literature review and benchmark. IEEE
Transactions on Software Engineering 47, 4 (2019), 676–693.

[29] Chen Liu, Bo Li, Jun Zhao, Ming Su, and Xu-Dong Liu. 2021. MG-DVD: A
Real-time Framework for Malware Variant Detection Based on Dynamic Het-
erogeneous Graph Learning. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21. 1512–1519.

[30] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng.
2019. Log2vec: A heterogeneous graph embedding based approach for detecting
cyber threats within enterprise. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’19). 1777–1794.

[31] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie
Tang. 2021. Self-supervised learning: Generative or contrastive. IEEE Transactions
on Knowledge and Data Engineering (2021).

[32] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

[33] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan
Frey. 2015. Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015).

[34] Jiang Ming, Zhi Xin, Pengwei Lan, Dinghao Wu, Peng Liu, and Bing Mao. 2017.
Impeding behavior-based malware analysis via replacement attacks to malware
specifications. Journal of Computer Virology and Hacking Techniques 13, 3 (2017),
193–207.

[35] Zequn Niu, Jingfeng Xue, Dacheng Qu, Yong Wang, Jun Zheng, and Hongfei Zhu.
2022. A novel approach based on adaptive online analysis of encrypted traffic
for identifying Malware in IIoT. Information Sciences 601 (2022), 162–174.

[36] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[37] Sean Park, Iqbal Gondal, Joarder Kamruzzaman, and Leo Zhang. 2019. One-
Shot Malware Outbreak Detection using Spatio-Temporal Isomorphic Dynamic
Features. In 2019 18th IEEE International Conference On Trust, Security And Privacy
In Computing And Communications/13th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE). IEEE, 751–756.

[38] Razvan Pascanu, Jack W Stokes, Hermineh Sanossian, Mady Marinescu, and Anil
Thomas. 2015. Malware classification with recurrent networks. In 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
1916–1920.

[39] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1150–1160.

[40] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K Nicholas. 2018. Malware detection by eating a whole exe. InWorkshops
at the Thirty-Second AAAI Conference on Artificial Intelligence.

[41] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour
Ahmadi. 2018. Microsoft malware classification challenge. arXiv preprint
arXiv:1802.10135 (2018).

[42] Angelo Schranko de Oliveira and Renato José Sassi. 2019. Behavioral Malware
Detection Using Deep Graph Convolutional Neural Networks. (2019).

[43] Luman Shi, Jiang Ming, Jianming Fu, Guojun Peng, Dongpeng Xu, Kun Gao, and
Xuanchen Pan. 2020. Vahunt: Warding off new repackaged android malware in
app-virtualization’s clothing. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’20). 535–549.

[44] Software. 2017. Chinese Academy of Sciences releases “King Kong” malware
intelligent analysis system. Dual-use technologies and products (2017). https:
//doi.org/10.19385/j.cnki.1009-8119.2017.11.046

[45] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. arXiv preprint arXiv:1908.01000 (2019).

[46] Mingshen Sun, Xiaolei Li, John CS Lui, Richard TB Ma, and Zhenkai Liang. 2016.
Monet: a user-oriented behavior-based malware variants detection system for
android. IEEE Transactions on Information Forensics and Security 12, 5 (2016),
1103–1112.

[47] Tiening Sun, Zhong Qian, Sujun Dong, Peifeng Li, and Qiaoming Zhu. 2022.
Rumor Detection on Social Media with Graph Adversarial Contrastive Learning.
In Proceedings of the ACM Web Conference 2022. 2789–2797.

[48] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial graph
augmentation to improve graph contrastive learning. Advances in Neural Infor-
mation Processing Systems 34 (2021), 15920–15933.

2023-01-18 06:12. Page 13 of 1–14.

https://doi.org/10.1109/TIFS.2019.2950134
https://www.av-test.org/en/statistics/malware/
https://doi.org/10.1109/TIFS.2020.2976559
https://doi.org/10.1109/TIFS.2020.3025436
https://www.cyberbit.com/blog/endpoint- security/malware-mitigation-when-direct-system-calls-are-used/
https://www.cyberbit.com/blog/endpoint- security/malware-mitigation-when-direct-system-calls-are-used/
https://doi.org/10.1145/3184558.3191621
https://doi.org/10.19385/j.cnki.1009-8119.2017.11.046
https://doi.org/10.19385/j.cnki.1009-8119.2017.11.046

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

[49] Ke Tian, Danfeng Yao, Barbara G Ryder, Gang Tan, and Guojun Peng. 2017.
Detection of repackaged android malware with code-heterogeneity features.
IEEE Transactions on Dependable and Secure Computing 17, 1 (2017), 64–77.

[50] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas. 2015.
SoK: Deep packer inspection: A longitudinal study of the complexity of run-time
packers. In 2015 IEEE Symposium on Security and Privacy. IEEE, 659–673.

[51] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. stat 1050 (2017), 20.

[52] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep graph infomax. arXiv preprint arXiv:1809.10341
(2018).

[53] Peng Wang, Zhijie Tang, and Junfeng Wang. 2021. A novel few-shot malware
classification approach for unknown family recognition with multi-prototype
modeling. Computers & Security 106 (2021), 102273.

[54] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jungh-
wan Rhee, Zhengzhang Chen, Wei Cheng, Carl A Gunter, et al. 2020. You Are
What You Do: Hunting Stealthy Malware via Data Provenance Analysis.. In
NDSS.

[55] Shen Wang and S Yu Philip. 2019. Heterogeneous Graph Matching Networks: Ap-
plication to Unknown Malware Detection. In 2019 IEEE International Conference
on Big Data (Big Data). IEEE, 5401–5408.

[56] Xiao Wang and Guo-Jun Qi. 2022. Contrastive learning with stronger augmenta-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[57] YaqingWang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing
from a few examples: A survey on few-shot learning. ACM Computing Surveys
(CSUR) 53, 3 (2020), 1–34.

[58] Ho Chung Wu, Robert Wing Pong Luk, Kam-Fai Wong, and Kui-Lam Kwok. 2008.
Interpreting TF-IDF term weights as making relevance decisions. ACM Trans.
Inf. Syst. 26, 3 (2008), 13:1–13:37. https://doi.org/10.1145/1361684.1361686

[59] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. 2021.
Self-supervised learning of graph neural networks: A unified review. arXiv
preprint arXiv:2102.10757 (2021).

[60] Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov. 2019.
Pretrained encyclopedia: Weakly supervised knowledge-pretrained language
model. arXiv preprint arXiv:1912.09637 (2019).

[61] Zhicong Yan, Jun Wu, Gaolei Li, Shenghong Li, and Mohsen Guizani. 2021. Deep
Neural Backdoor in Semi-Supervised Learning: Threats and Countermeasures.
IEEE Trans. Inf. Forensics Secur. 16 (2021), 4827–4842. https://doi.org/10.1109/
TIFS.2021.3116431

[62] Jianhua Yin and Jianyong Wang. 2014. A dirichlet multinomial mixture model-
based approach for short text clustering. In The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA
- August 24 - 27, 2014, Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei
Wang, and Rayid Ghani (Eds.). ACM, 233–242. https://doi.org/10.1145/2623330.
2623715

[63] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812–5823.

[64] Jixin Zhang, Zheng Qin, Hui Yin, Lu Ou, and Kehuan Zhang. 2019. A feature-
hybrid malware variants detection using CNN based opcode embedding and
BPNN based API embedding. Computers & Security 84 (2019), 376–392.

[65] Jixin Zhang, Kehuan Zhang, Zheng Qin, Hui Yin, and Qixin Wu. 2018. Sensitive
system calls based packed malware variants detection using principal component
initialized MultiLayers neural networks. Cybersecurity 1, 1 (2018), 1–13.

[66] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun
Zhang, Mi Zhang, and Min Yang. 2020. Enhancing state-of-the-art classifiers with
api semantics to detect evolved android malware. In Proceedings of the 2020 ACM
SIGSAC conference on computer and communications security (CCS ’20). 757–770.

[67] Zhilu Zhang and Mert Sabuncu. 2018. Generalized cross entropy loss for training
deep neural networks with noisy labels. Advances in neural information processing
systems 31 (2018).

[68] Huan Zhao, Quanming Yao, Jianda Li, Yangqiu Song, and Dik Lun Lee. 2017.
Meta-Graph Based Recommendation Fusion over Heterogeneous Information
Networks. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017.
ACM, 635–644. https://doi.org/10.1145/3097983.3098063

[69] Kaifa Zhao, Hao Zhou, Yulin Zhu, Xian Zhan, Kai Zhou, Jianfeng Li, Le Yu, Wei
Yuan, and Xiapu Luo. 2021. Structural Attack against Graph Based Android Mal-
ware Detection. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’21). 3218–3235.

2023-01-18 06:12. Page 14 of 1–14.

https://doi.org/10.1145/1361684.1361686
https://doi.org/10.1109/TIFS.2021.3116431
https://doi.org/10.1109/TIFS.2021.3116431
https://doi.org/10.1145/2623330.2623715
https://doi.org/10.1145/2623330.2623715
https://doi.org/10.1145/3097983.3098063

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Problem Statement
	3.2 Sensitivity Heterogeneous Graph Construction
	3.3 Adversarial Heterogeneous Graph Augmentation
	3.4 Contrastive Learning-based Malware Detection

	4 Experiments
	4.1 Dataset and Baseline Methods
	4.2 Experimental Settings
	4.3 Few-shot Malware Detection Results
	4.4 Parameter Sensitivity
	4.5 Unknown Malware Detection
	4.6 Ablation Study
	4.7 Packed Malware

	5 Related Work
	5.1 Malware Detection
	5.2 Few-shot Malware Classification
	5.3 Graph Contrastive Learning

	6 Conclusion
	References

