
Is That Malware Reading Twitter? Towards Understanding and
Preventing Dead Drop Resolvers

Anonymous Author(s)

ABSTRACT
Malware authors are integrating an entirely novel trick:
using internet dead drops to retrieve rendezvous points for
their C&C server. Known as Dead Drop Resolvers (DDRs),
these malware can migrate C&C servers by simply posting
rendezvous points (i.e., encoded URLs or IPs) on public
internet services. Hiding in plain sight, malware authors
manipulate their posted content, so authorities remain
unaware of their true intent. Authorities must undergo
extensive analysis to de-manipulate the C&C address before
taking action. This research aims to study this DDR
adoption trend and counteract these threats. We developed
R2D2, an automated DDR malware analysis pipeline, and
analyzed 100K malware identifying 10,170 DDR malware
from 154 families. R2D2 also revealed the DDR
de-manipulation schemes, providing authorities with a rapid
means to decode C&C addresses. We reported our findings
to service providers, who confirmed and took action against
9,155 DDRs (90% of DDR malware discovered).

CCS CONCEPTS
• Security and privacy → Malware and its mitigation;

KEYWORDS
Malware; Internet Dead Drops; Botnet Counteraction

1 INTRODUCTION
Internet dead drops allow malware, known as Dead Drop
Resolvers (DDRs), to dynamically resolve their C&C server
IP or URL. These dead drops (D2) include everything from
social media networks (e.g., Twitter) to data hosting
platforms (e.g., Dropbox) to bitcoin transactions on the
blockchain. These services allow anonymous access to
user-created content, and network traffic to these services
appears benign to firewall filters [1], [2]. Importantly, botnet
operators manipulate (i.e., encrypt or encode) their posts to
prevent service providers from attributing the posts to
botnet activity. Instead, service providers must wait for
authorities to report content on their platforms related to
botnet infections. A recent discovery demonstrated this and
took down one botnet abusing the blockchain [3]–[5], which
highlighted the extensive manual analysis required to
identify DDRs, de-manipulate the C&C server address
(called “rendezvous point”), and attempt content revocation.

To appreciate the novel challenges of DDR, it is
important to consider how it improves upon the prior botnet
state-of-the-art. Botnet takedowns rely on recovering C&C
addresses for seizure and sinkholing [6]–[11]. Naive malware
encode static C&C addresses in their binary, but ample

research exists to recover manipulated URLs from a
binary [12]–[14]. Modern botnets confound takedown
attempts by dynamically resolving C&C addresses. Earlier
botnets used fast-flux networks [15]–[17] or domain name
service (DNS) calculation [18], [19], but these provide only a
small range of C&C address options, which makes recovering
C&C addresses straightforward [16], [19]. To complicate
C&C address recovery, domain generation algorithms
(DGA) [20]–[22] can generate an unlimited number of C&C
addresses, making it the preferred approach for advanced
botnets. Fortunately, because the DGA is available in the
malware binary, existing techniques can re-implement the
DGA to predict all future candidate domains [23]–[26].

DDRs improve upon the prior C&C resolution approaches
in several ways. First, C&C addresses are unpredictable
because, unlike DGAs, no algorithm exists to generate them.
Botnet operators simply post a new rendezvous point.
Second, DDRs prevent botnet sinkholing. Instead,
authorities must rely on service providers to revoke the
posted content and disable future posts. Moreover, service
providers alone can hardly attribute content on their
platforms to C&C rendezvous points (e.g., Figure 1 in §2).
Third, C&C addresses are no longer discoverable via
malware binary analysis. At best, existing techniques [12],
[27]–[29] can tell authorities that the malware is connecting
to a benign service on the Internet. Authorities must
attribute the content (e.g., accounts, posts, blockchain
transactions) to DDR and report to the provider.
Unfortunately, our research found some providers are
reluctant to remove C&C rendezvous points even with proof
of its use for DDR (§5.5).

Ideally, service providers can remove the account
(analogous to domain seizure), preventing the botnet from
leveraging dead drops. Alternatively, if authorities know the
correct data manipulation recipe, service providers can
replace the content with the sinkhole server IP/URL [24],
[25], [30]. Interestingly, the malware binary itself implements
a DDR client — connecting to the D2 service, searching for
its content, and fetching the C&C rendezvous point. This
prompted our first key insight: Authorities must extract not
only the D2 but also the malware’s DDR logic to search for
and fetch DDR content. After the rendezvous point is
fetched, de-manipulating requires time-consuming manual
analysis [3]–[5]. Surprisingly, our research found individual
malware layering up to 4 data manipulation schemes, 22,937
schemes, and an average of 2 schemes per malware (§5.2).
This prompted our second key insight: If authorities extract
this de-manipulation “recipe”, it can be used to verify DDR
content on the D2 service or enable rendezvous point
replacement and botnet sinkholing.

1

SLcrazystone
高亮

SLcrazystone
高亮

To explore our key insights, we comprehensively studied
DDR adoption in malware in collaboration with <redacted>,
a network edge security provider serving over 25% of the
Fortune 100. To Reveal Rendezvous Points from Dead Drops,
we develop R2D2, a malware binary analysis framework that
automates the effort needed to seize or sinkhole DDR botnets.
R2D2 concollicaly explores the malware to localize the DDR
logic, confirming DDR integration. Then, R2D2 looks for the
hybrid DDR+DGA capability, which sheds light on a unique
malware practice: DDR malware that use DGAs to generate
accounts for D2 services. Next, R2D2 moves to identify data
manipulation routines in the malware by searching through
the symbolic expression derived during concolic analysis.
However, we identified a unique challenge whereby R2D2
must isolate only the portion of the expression related to
data manipulation to ensure that the matching is effective
and accurate. To enable this, R2D2 uses a novel Input/Output
(IO) boundary isolation technique to isolate routines in the
symbolic expression. Using these boundaries, R2D2 matches
symbolic expression to form a de-manipulation recipe.

We deployed R2D2 on 100K malware captured between
2017 to 2022 and uncovered 10,170 DDR malware from 154
families. R2D2 found that 95% of DDR malware use 1 or more
de-manipulation algorithms, an average of 2 per malware,
and over 53% use String Parsing with Base64 as their recipe.
We also found blockchain services were the most popular
category of DDR-enabling services accounting for over 30%
of DDR malware in our dataset. Since we lack authority for
seizure or sinkholing, we reported all of our findings to the
appropriate service providers, who confirmed our findings and
took action against 9,155 DDRs (90% of our total findings).
Of the remainder, the accounts for 774 malware were already
taken down at the time of our study. We are awaiting a
response from other service providers hosting the other 241
DDRs.

2 CHALLENGES AND OPPORTUNITIES
Recently, industry experts have sounded the alarm on
malware abusing internet services in novel ways [2], [31]–[33].
Yet, mitigating these threats has been ineffective. To date,
MITRE [34] suggests intrusion detection systems for (1)
blocking malicious traffic to benign websites or (2)
restricting all access (benign or not) to web-based content
used by malware [35]. However, authorities can hardly
isolate malware-specific traffic to D2s from all other benign
traffic. Moreover, the services enabling D2s are rightly used
by organizations globally [31], so blanket restrictions are
problematic. Using the razy incident [36] as an example, we
show how authorities could respond rapidly with R2D2.
Challenge 1: “Why is that malware reading Twitter?”: Razy
floods VirusTotal with submissions and retrieves a message
from Twitter. The initial razy analysts used API calls and
network trace analysis to identify contacted domains [36]. Yet,
they could not confirm how the malware used the Twitter
message, so they focused on its VirusTotal-related actions,
which only served as a distraction.

Figure 1: Twitter Message Retrieved by Razy.

R2D2 confirmed razy uses Twitter to dynamically resolve
its C&C server address. R2D2 uses concolic analysis, which is
beneficial for performing a large-scale study for four reasons:
(1) R2D2 can localize the DDR logic via data flow analysis
(§3.1). (2) Concolic analysis is also necessary prior to (1)
because R2D2 considers hybrid DDR+DGA techniques (§3.1)
in malware [37]. Specifically, our research uncovered 12 DDR
malware using DGAs to dynamically generate DDR identities.
(3) Symbolic data enables analysis even after botnet operators
have deleted the DDR account. (4) The symbolic expressions
enable R2D2 to reverse data manipulation of the rendezvous
point (§3.2) to form the de-manipulation recipe (§3.3).
Challenge 2: “Does that Tweet look suspicious?”: The
previous razy investigation could not prove how the malware
used the Twitter post. So, they viewed the Twitter account
page and noted the suspicious-looking message (Figure 1).
An experienced analyst may infer some form of Base64
encoding. However, investigators have no way to identify
data manipulation types automatically, and when faced with
multiple manipulation techniques, C&C address recovery is
a prohibitively complex task.

Our second key insight (§1) led us to consider the
de-manipulation recipe. Since DDR malware often use more
than 1 de-manipulation routine, identifying routines in order
(i.e., the recipe) enables the recovery of the C&C server
address from the rendezvous point. R2D2 identified that
razy selectively removes preceding characters before
applying a Base64 decoder. However, this requires R2D2 to
match a known decoding algorithm to the malware’s
arbitrary implementation of those algorithms — a
challenging goal as there are infinitely many
implementations of the same decoding logic. To solve this
challenge, R2D2 uses symbolic data to represent the Twitter
message. As the malware executes, this symbolic data forms
an expression that assumes additional values corresponding
to the computations performed on the data. Thus, the
expression pertains to both the string parsing and Base64
decoding. When the DDR logic is localized, and DDR
integration is confirmed in the malware (§3.1), R2D2 takes
the symbolic expression generated from the initial analysis
and compares it with a set of reference decoding algorithms
that are pre-built in R2D2 (§3.2 and §3.3).
Challenge 3: “Sinkhole and seizure from a Tweet?”: Botnet
orchestrators relinquish some control by using D2s as a
trampoline to their C&C server. To seize or sinkhole the
razy C&C server, authorities must uncover the C&C address
by de-manipulating the tweet or requesting that it be
removed. They can also encode their sinkhole URL in the
expected format and replace the rendezvous point.

2

SLcrazystone
高亮

Therefore, our final goal is to provide authorities with a
de-manipulation recipe that they can use to sinkhole or seize
the DDR. While R2D2 can compare 2 symbolic expressions
for algorithm verification, much of the malware’s symbolic
expression is unrelated to data de-manipulation. So, R2D2
needs to isolate only the input and output domains that mark
the start and end of each de-manipulation algorithm in the
malware’s symbolic expression before comparing it with our
set of reference decoder algorithms. Thus, we develop a novel
approach to isolate the domains (§3.2). This results in a de-
manipulation recipe arming investigators with the means to
automatically uncover C&C addresses from rendezvous points.
For razy, R2D2 recovered https://w0rm.in/join/join.php,
a hacking forum used to send C&C commands to razy bots.

Authorities can collaborate with service providers to take
down the reported content — as we did in this research (§5.5).
They can also use R2D2’s de-manipulation recipe to monitor
and extract newly posted rendezvous points. Furthermore,
providers can replace the rendezvous points with an authority-
owned sinkhole URL manipulated in the correct format.

3 R2D2’S ANALYSIS PIPELINE
R2D2’s workflow proceeds through the following phases: DDR
logic localization (§3.1) is used to confirm DDR integration in
malware. The output of this phase is a symbolic expression
containing computations from malware exploration. R2D2
then isolates de-manipulation boundaries (§3.2) to segment
the symbolic expression for comparison with a set of reference
de-manipulation algorithms for recipe verification (§3.3).

3.1 DDR Logic Localization
To localize DDR logic, R2D2 uses concolic analysis because
concrete exploration allows the malware to unpack itself
natively [38]–[41]. Furthermore, since we studied malware
captured from 2017, we expect some dead D2 endpoints. So,
R2D2 uses modeled network APIs (e.g., connect), enabling
malware exploration regardless of endpoint liveness. When a
network API is invoked, R2D2 injects symbolic return values
to trick the malware (e.g., GetLocaleInfo retrieves the bot’s
location before continuing the attack). These modeled APIs
allow R2D2 to selectively inject symbolic data to ensure
continued malware exploration. Appendix A provides an
extendable list of all modeled defensive evasion APIs.
DDR Client Connection. After executing through packing
layers and surmounting anti-analysis techniques, R2D2
intercepts the malware’s invocation of network APIs used
for D2 connection (Figure 2, 1). D2 connection is
determined by comparing the connection target (e.g., razy
uses twitter.com) against a pre-defined allow list of D2
candidates 2 . This list is based on Tranco [30]1 , allowing
us to identify only benign websites that support DDR2.
After the D2 connection, the malware retrieves the
rendezvous point from data hosted by a D2 account (e.g.,
pidoras6 for razy). Before proceeding with the analysis,
1Available at https://tranco-list.eu/list/J49Y.
2We assume malicious connection targets if not found on Tranco.

Figure 2: DDR Logic Localization.

R2D2 pinpoints how the malware determined the D2
account. This is important because some DDR malware are
hybrids, meaning they use DGAs to generate D2 accounts
(DDR+DGA). If we can identify hybrid DDR malware, we
can employ similar counteraction techniques against
traditional DGA malware.
Finding DDR+DGA Indicators. There are 3 categories of
D2 account origins: (1) hard-coded in the malware, (2)
retrieved from a dropped file, or (3) dynamically generated,
like DGA malware. To categorize, R2D2 populates a shadow
memory throughout analysis 3 . When the malware invokes
a network API, R2D2 extracts the memory location where
the D2 account is and searches the shadow memory for its
origin 4 . For (1), R2D2 recursively traces back through the
shadow memory to find which instruction last defined the
account name’s memory location until no more definers are
found. In this case, R2D2 ends at a concrete value
representing the starting location of the account name in the
malware. While (2) is solved in the following section, R2D2
does not explore the following path as no actual account can
be retrieved from symbolic data. However, R2D2 continues
to identify potential backup accounts.

Category (3) is similar to (1) because a portion of the
URL is hard-coded in the malware, but the account is
dynamically generated (e.g., twitter.com and 1b0xsrs).
DGAs use a seed to initialize account name generation. This
seed is often based on a system-available value (e.g.,
GetTickCout), like the popular Conficker DGA malware [42].
Since R2D2 hooks system query APIs and injects symbolic
data to bypass defensive evasion, the account name will be
symbolic. In contrast, the domain name will be concrete.
When R2D2 identifies this symbolic/concrete data, it
originates from a DGA.

DGA malware counteraction techniques are effective [21],
[23], but they do not enable D2 account origin analysis. R2D2
does not aim to improve DGA counteraction methods but
exposes opportunities to counteract hybrid DDR malware,
i.e., applying DGA counteraction techniques is not an option
until the DGA is known. The location of the last API used to
generate the DGA seed pinpoints the location of the DGA in
the malware. Whether hybrid or traditional DDR malware,
R2D2 next moves to identify the rendezvous point connection.

3

Table 1: Common Malware Data Manipulation Algorithms.

Decryption & Decoding Algos References
Exclusive OR (XOR) [45]–[49]
AES [50], [51]
DES [52], [53]
Data Protection API [53]
RC4 [45]
String to Int, Int to String [54]
Character Rotation [47], [48]
Character Subtraction [48]
Base 16 [37], [48], [55]
Base 32 [56]
Base 64 [36], [37], [47], [48], [57]
Base 85 [58], [59]
String Parsing [36], [47], [54], [55], [60]

Rendezvous Point Connection. DDR malware retrieves its
rendezvous point (e.g., Figure 1) and de-manipulates it to
uncover its C&C server address. To confirm, R2D2 injects
symbolic (tainted) data into the memory location (e.g., razy
uses lpBuffer of WinHttpReadData) that stores the
rendezvous point and tags it (Figure 2, 5). R2D2 uses
concolic taint propagation to track the tag, but since R2D2
injects symbolic data for taint analysis, multiple states are
spawned for exploration. This is especially computationally
expensive when symbolic loops are encountered. However,
loops often do not lead to increased code coverage [43], so
R2D2 maps explored code regions and references this map
when selecting a new state which limits new-state
exploration by prioritizing those that lead to unexplored
code. Furthermore, based on previous work, which
discovered that most malware samples run for less than 2
minutes or more than 10, and 98% of the basic blocks are
executed within the first 2 minutes [44], we set an upper
bound run time to 15 minutes which we find more than
sufficient for our study. For R2D2’s evaluation, we
calculated an average run time of 409 seconds to localize
DDR logic, i.e., when the tag appears in an API that is
responsible for establishing a network connection (e.g., razy
uses pswzServerName for WinHttpConnect) 6 , R2D2 has
localized the DDR logic (i.e., razy Twitter rendezvous point
retrieved using WinHttpReadData was used to establish a
connection to the C&C server using WinHttpConnect).

3.2 De-Manipulation IO Boundary Isolation
Data manipulation includes encryption (e.g., AES) and
encoding (e.g., Base16) of rendezvous points. When the
malware retrieves the rendezvous point, it de-manipulates it,
e.g., razy (in §2) uses String Parsing and Base64 decoding.

Our preliminary research suggests 14 de-manipulation (9
decoding, 5 decryption) algorithms common in malware
(Table 1). R2D2 first isolates boundaries in the symbolic
expression (tainted data) where de-manipulation occurs to
compare with reference implementations of those in Table 1.
If R2D2 can identify the data de-manipulation techniques,
authorities can uncover C&C server addresses towards DDR
botnet monitoring and counteraction.

Reference Algorithm Implementations. We referenced
open-source code repositories and libraries to identify
implementations of algorithms in Table 1. R2D2 can be
extended by adding algorithm source code. Reference
implementations are either (1) integrated into R2D2 so we
can submit an input and observe its output, and (2) R2D2
symbolically explores the reference implementation resulting
in a symbolic expression representing its algorithmic
computations. To identify decoder IO boundaries, R2D2
uses (1), and to confirm de-manipulation algorithms from
the boundaries, R2D2 uses (2), described in §3.3.

Concerning IO boundaries, symbolic expressions do not
have any natural or observable delineations. As the malware
executes, injected symbolic data assumes operations
corresponding to mathematical computations. Thus,
partitioning a symbolic expression is a unique challenge,
especially when the malware uses more than 1
de-manipulation algorithm. If algorithms are incorrect or
out of order, authorities cannot recover the C&C server
address. Thus, R2D2 takes the symbolic expression from
DDR logic localization (§3.1) and uses concrete decoder
analysis (§3.2.1) for decoder isolation and decryption
source-to-sink mapping (§3.2.2) for decryption isolation.
This enables R2D2 to identify the de-manipulation recipe
from the symbolic expression (§3.3).

3.2.1 Concrete Decoder Analysis. To isolate decoder
boundaries, R2D2 uses Algorithm 1, which relies on concrete
values computed during malware execution (concrete values
are based on constraints accumulated during execution) to
find the start and end (IO) of decoding. As R2D2 analyzes
the malware, stepping through instructions in the binary,
Algorithm 1 evaluates memory accesses and concretizes its
symbolic contents (lines 4-6). Next, the algorithm iterates
through decoders from Table 1 and uses the concrete data as
input for each (lines 7-8). If the concrete data is the
retrieved rendezvous point, then the output is the C&C
server address. Each output is stored in a container for
algorithm-to-instruction mapping 𝐿 for later referencing
(line 9). Thus far, the concretized data 𝐶 (line 6), the
decoder 𝐷 (line 7), the decoded result 𝑑 (line 8), and 𝐿 (line
9) have been initialized. This process continues throughout
R2D2’s analysis. Concurrently, the algorithm iterates
through all previously stored results in 𝐿 (lines 10-13) to
extract comparative data for boundary isolation. For
example, as it iterates through 𝐿, if the algorithm finds a
previous decoded value (e.g., the C&C server address) that
matches with the current concrete value, then the decoder
boundary begins at the instruction of the decoded value to
the instruction of the current matching concrete value.

We illustrate Algorithm 1 using razy in Figure 3. At
instruction #4 (𝐼𝑛𝑠𝑡4), razy accesses memory and R2D2
concretizes the contents to razy’s rendezvous point 1 (also
see Figure 1). The input is submitted to reference decoder
algorithms, and the output 2 is stored for later comparison.
As execution continues, R2D2 compares concretized results
with previously decoded results to identify a match. If a

4

Algorithm 1 De-Manipulation IO Boundary Isolation
Input: 𝑀𝑎𝑙𝑤𝑎𝑟𝑒, 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑠\𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑟𝑠 = {𝐷1 . . . 𝐷16}
Output: 𝐷𝐵 : Container to store De-Manipulation Boundaries
1: 𝐿 : Container to store Algorithm-to-Instruction mapping
2: function DeManipulationBoundary(𝑀𝑎𝑙𝑤𝑎𝑟𝑒)
3: while 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = ExploreMalware(𝑀𝑎𝑙𝑤𝑎𝑟𝑒) do
4: 𝐼 ← 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
5: if 𝑀 ←𝑀𝑒𝑚𝑜𝑟𝑦𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑(𝐼) then
6: 𝐶 ← 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑖𝑧𝑒𝑀𝑒𝑚𝑜𝑟𝑦𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑀)

◁ Iterate 9 Decoder Algorithms
7: for each 𝐷 ∈ 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑠 do
8: 𝑑← 𝐷𝑒𝑐𝑜𝑑𝑒𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒𝐷𝑎𝑡𝑎(𝐷, 𝐶)
9: 𝑈𝑝𝑑𝑎𝑡𝑒𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑀𝑎𝑝𝑝𝑖𝑛𝑔(𝐿, 𝐼, 𝐶, 𝑑)

◁ Iterate all previously mapped results
10: for each 𝑙← 𝐿 do
11: 𝐼𝑝, 𝐶𝑝, 𝑑𝑝 ← 𝑙

◁ Previously decoded results equals current concrete value
12: if 𝑑𝑝 ≡ 𝐶 then
13: 𝑈𝑝𝑑𝑎𝑡𝑒𝐷𝑒𝑀𝑎𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐷𝐵, 𝐷, 𝐼𝑝, 𝐼)
14: else if 𝐶𝑖 ← 𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑑𝐹 𝑢𝑛𝑐𝐶𝑎𝑙𝑙(𝐼) then

◁ Iterate 7 Decryption Algorithms
15: for each 𝐷 ∈ 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑜𝑟𝑠 do

◁ Locate Start and End decryption boundaries
16: if 𝑆, 𝐼𝑠 ← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐼𝑂(𝐷, 𝐶𝑖) then
17: 𝐼𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∪ (𝑆, 𝐼𝑠)
18: else if 𝐸, 𝐼𝑒 ← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐼𝑂(𝐷, 𝐶𝑖) then
19: 𝑂𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∪ (𝐸, 𝐼𝑒)

◁ Create Decryption IO Pairs
20: 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐼𝑂𝑃 𝑎𝑖𝑟𝑠←𝑀𝑎𝑡𝑐ℎ𝐼𝑂(𝐼𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦, 𝑂𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦)
21: for 𝑃 𝑟 ∈ 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐼𝑂𝑃 𝑎𝑖𝑟𝑠 do
22: 𝐷, 𝐼𝑠, 𝐼𝑒 ← 𝑃 𝑟
23: 𝑈𝑝𝑑𝑎𝑡𝑒𝐷𝑒𝑀𝑎𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐷𝐵, 𝐷, 𝐼𝑠, 𝐼𝑒)
24: if 𝐷𝐵 then
25: 𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝐷𝐵)

match is identified 3 , the decoder boundary (e.g., Base64)
is from 𝐼𝑛𝑠𝑡4 to 𝐼𝑛𝑠𝑡35 4 . However, R2D2 may identify
multiple boundaries for each decoder. Thus, the boundary
for Base64 is also 𝐼𝑛𝑠𝑡12 to 𝐼𝑛𝑠𝑡35 5 . This occurs if a
wrapper function is used that does not modify input or
output values. Before completing boundary analysis, R2D2
computes the shortest distance between boundary
instructions for boundary isolation (Algorithm 1, line 25).

Using the boundary, R2D2 segments the symbolic
expression from §3.1 for verification. An astute reader may
consider symbolic expression matching redundant since
R2D2 has already concretely delineated the malware’s
decoders. This is necessary to discriminate 2 algorithms
producing the same output, e.g., if razy’s rendezvous point
aHR0cHM6Ly93MHJtLmluL2pvaW4vam9pbi5waHA= is decoded
with Base64, the result is https://w0rm.in/join/join.php.
If we use the same input and XOR with
6148523063484d364c79395b393c3a07764243027c401d5808-
391b1c0e04575f08065c194f38294d3, we arrive at identical
outputs. If the DDR botnet orchestrators post additional
encoded messages, relying on only the concretely derived
decoders could lead authorities to apply the incorrect
de-manipulation recipe. Thus, R2D2 compares each
segmented boundary with its corresponding reference
implementation symbolic expression for verification.

3.2.2 Decryption Source-To-Sink Mapping. R2D2
intercepts invoked API for DDR logic localization (§3.1).
3Converted from ASCII to hexadecimal for readability.

Figure 3: Razy’s Decoder IO Boundary Isolation.

These interceptions also prove useful to link decryption
APIs-in-sequence for analysis. Using Algorithm 1, while
R2D2 explores the malware (line 1), it evaluates call
instructions and selects those specific to imported functions
(line 14). If the imported function is an API responsible for
instantiating decryption (e.g., CryptAcquireContext),
R2D2 updates the IBoundary set representing the boundary
source (lines 16-17). If the boundary sink is identified (e.g.,
CryptReleaseContext), R2D2 updates OBoundary (lines
18-19). To pair sources and sinks, R2D2 uses 𝑀𝑎𝑡𝑐ℎ𝐼𝑂 (line
20). For example, during concolic exploration, if two states
are explored, and the first state invokes a source and sink
API, those APIs are paired since they were invoked and
intercepted by R2D2 from the same state. Lastly, these pairs
are used to update our container of all de-manipulation
boundaries for further analysis (lines 21-23).

3.3 De-Manipulation Recipe Verification
As discussed in §3.2, though we have de-manipulation
algorithm boundaries, symbolic expression matching is still
needed for verification. The rendezvous point retrieved from
the DDR may contain additional characters used as string
markers, or portions of the data may be manipulated
differently. If we do not segment the symbolic expression
before comparison with a reference implementation, a false
negative may occur for de-manipulation recipe identification.
Thus, granularity is necessary to verify.
Segmenting Expressions. Algorithm 2 takes 𝐷𝐵 (decoding
boundaries) from Algorithm 1 to segment the symbolic
expression (lines 4-6). Each boundary 𝑏 (lines 4-5) contains
the decoder type 𝐷 and the starting 𝐼𝑠 and ending 𝐼𝑒

boundary addresses used to segment the expression based on
its attributes, i.e., addresses where the symbolic expressions
grow. R2D2 parses only those parts of the expression within
the boundary (line 6). Now, R2D2 compares the segmented
expression with the symbolic reference implementation
expression corresponding to 𝐷 (line 7).
Compare Decoder Expressions. R2D2 injects symbolic data
𝜆 to localize the DDR logic which generates a malware
symbolic expression 𝑀𝜆 (Figure 4 1). To generate the
reference implementation symbolic expressions, 𝑀𝜆 is used
as input to decoding algorithms 2 , ensuring the resulting

5

Algorithm 2 Symbolic Expression Matching
Input: 𝐷𝐵 : Container to store Decoder Boundaries
Output: 𝐷𝑅 : Decoding Recipe
1: 𝑀𝜆 ← Malware Symbolic Expression
2: 𝑅𝐼 ← Symbolic Expressions for Reference Implementations
3: function SymbolicExpressionMatching(𝐷𝐵)
4: for each 𝑏 ∈ 𝐷𝐵 do

◁ Extract the decoder and start & end boundary addresses
5: 𝐷, 𝐼𝑠, 𝐼𝑒 ← 𝑏
6: 𝑠← 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑀𝜆, 𝐼𝑠, 𝐼𝑒)
7: 𝑟𝑖← 𝑅𝐼.𝑖𝑛𝑑𝑒𝑥(𝐷) ◁ Assign decoder symbolic expression
8: if 𝑑𝑚← 𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠(𝑠, 𝑟𝑖) then
9: 𝐷𝑅.𝑎𝑑𝑑(𝑑𝑚)

expression (e.g., 𝐵64𝜆 3) assumes the constraints imposed
during the malware execution. This is a prerequisite for
symbolic expression comparison, which relies on symbolic
solvers. When a decoding algorithm is symbolically explored,
concretized values assumed during forking correspond to the
previous constraints imposed by 𝑀𝜆.

Now, having both symbolic expressions, R2D2 can compare
them for equivalence 4 . For comparison (line 8), there are
2 conditional constructs: (1) check if the overall expressions
match, if not, (2) solve for and compare the concretized
outputs. Toward clarity, we use a symbolic expression with
starting 𝜆 values (Read byte_1, v0_xor_0). This expression
is used as input to 2 versions of an XOR by 0x23 algorithm. As
the expression is decoded, it grows with additional operations
corresponding to algorithmic computations. For example, 1
byte of 𝑀𝜆 and 𝑋𝑂𝑅𝜆 is partially transformed into:
𝑀𝜆 = (Or (ZExt (Read byte_1, v0_xor_0)) 0x23)

𝑋𝑂𝑅𝜆 = (Xor 0x23 (ZExt (Read byte_1, v0_xor_0)))
Comparing 𝑀𝜆 and 𝑋𝑂𝑅𝜆 considers node placement,

edges, and expression size. This static check is less
computationally expensive. If it fails, R2D2 invokes the
symbolic solver to compare concretized outputs of both
expressions. Concrete values are based on the constraints
from 𝑀𝜆 that are imposed on 𝑋𝑂𝑅𝜆 during its execution.
This ensures expressions are evaluated based on the same
constraints resulting in the same concrete output if they are
functionally identical. Since each comparison is per explored
path, the results are a ratio of matches versus non-matches,
i.e., when concretized outputs for each path are equal, it is a
match, else a non-match. If the ratio is high enough (further
explained in §4), their equivalence is confirmed.
Compare Decryption Expressions. At this point, R2D2
carefully verifies decryption algorithms. R2D2 partitions
boundaries based on source and sink markers. Specifically,
the boundaries are based on constraints imposed on sinks
(OBoundary) as they relate to their source (IBoundary).
Recall, R2D2 uses taint analysis for DDR logic localization
(§3.1). Although not a DDR malware, loadmoney’s
cryptographic function (left of Figure 5) illustrates
segmenting symbolic expressions based on an isolated
boundary. From steps 1-2, loadmoney acquires the handle to
the cryptographic service protocol before retrieving the hash
object. From 3-6, loadmoney computes the message hash for
later comparison. The dotted lines in Figure 5 match the

Figure 4: R2D2 Symbolic Expression Matching for Razy.

input [in] constraints of a parameter with the output [out]
constraints of at least one API predecessor. When a sink
decryption API is invoked (e.g., CryptReleaseContext),
R2D2 backward analyzes the constraints to recover the API
sequence confirming the decryption algorithm. This is
known as decryption constraint chaining since the APIs
recovered contain constraints that can be linked to
preceding APIs. The second example illustrates a potential
DDR malware employing decryption APIs. After data is
read from the D2 (e.g., razy uses twitter.com) (7),
decryption begins with cryptographic context initialization
(8) before key derivation (9). Then, the data read (lpBuffer,
10) is decrypted. R2D2’s backward analysis would confirm
the constraints of the decryption algorithm revealing the
APIs-in-sequence, which are used to segment the malware’s
symbolic expression, i.e., extract only the portion of
expression relating to decryption.

To generate reference implementation symbolic
expressions for comparison with the malware expression,
R2D2 uses decryption models, i.e., source code
implementations for decryption algorithms from Table 1
based on the sequence of APIs. Like the previously
described symbolic exploration of decoding functions, R2D2
explores the decryption algorithm implementations to
generate a symbolic expression. R2D2 uses decryption
constraint chaining to identify constraints of interests that
relate only to the sequence of APIs. Then, R2D2 uses
compareExpression (Algorithm 2, line 8) to match the
segmented expression with constraints corresponding to
decryption reference implementations. If they are the same,
their constraints will match because R2D2 is only interested
in the algorithmic computations as they pertain to
decryption API invocation. If there is a confirmed match,
R2D2 reports the de-manipulation recipe containing an
ordered set of decryptors used in malware.

4 VALIDATING OUR TECHNIQUES
R2D2 is implemented in C++/Python leveraging S2E [41] for
concolic analysis. We use custom code (≈8k LoC) to localize
the DDR logic and identify the de-manipulation recipe.

6

Figure 5: Constraint Chaining for Crypto Identification.

4.1 DDR Logic Localization
To stress-test howR2D2 localized the DDR logic, we randomly
chose 5 known DDR malware families and 5 variants of each 4

totalling 25 ground truth DDR malware. Since we also seek
to identify hybrid DDR+DGA malware, we used a known
DGA malware, clocker (or cryptolocker, last row), to augment
our ground truth dataset.

Table 2 presents R2D2’s ground truth performance.
Columns 1-2 list malware families and the number of
variants. The next 8 columns are the ground truth D2s and
D2 account origins, including accuracy metrics — true
positive (TP), false positive (FP), and false negative (FN),
respectively. The final column list the average exploration
time for each malware. Overall, R2D2 correctly localized the
DDR logic for 23/25 DDR malware with a 95% Acc.
(accuracy). For D2 account origin, R2D2 achieved a 96%
(28/30) accuracy. Furthermore, of the 30 malware, 10 of
them had dead endpoints (comnie and clocker). However,
unlike pure concrete execution, which cannot analyze
malware with non-available endpoints, R2D2 enabled
malware exploration irrespective of endpoint liveness.

Upon closer inspection, we found 2 FNs in R2D2’s DDR
logic localization of msil (Row 5). A manual investigation
confirmed this as a DDR malware, but R2D2 could not
locate the rendezvous point connection. This resulted from
an unresolved symbolic constraint accumulated through loop
exploration. Although R2D2 prioritizes code exploration from
unexplored regions (§3.1), this multi-nested loop exhausted
R2D2’s 15-minute run time. However, this rarely occurred.
We also note 2 FNs during clocker analysis which occurred
4There is a 93.75% chance that the median value of a DDR malware is
between the smallest and largest values in any random sample of five.

Table 2: Validating DDR Logic Localization.

Family # Dead Drop TP FP FN D2A Origin TP FP FN Time(s)
razy 5 twitter.com 5 0 0 HC 5 0 0 148
doina 5 drive.google.com 5 0 0 HC 5 0 0 230
kryptik 5 pastebin.com 5 0 0 HC 5 0 0 484
comnie 5 github.com1 5 0 0 HC 5 0 0 417
msil 5 pastebin.com 3 0 2 HC 5 0 0 803
clocker 5 nwbyrkswt.net1,2 - - - DGA 3 0 2 332

Total 30 Acc. (95%) 23 0 2 Acc. (96%) 28 0 2 409
D2A = D2 Account, HC = hard-coded

1: Dead D2 identities (e.g., pidoras6 for razy from §2)
2: This is one of many DGA domains that R2D2 identified

because 2 variants contained a hard-coded target that the
malware attempted to connect to. If it failed, then the DGA
was used. R2D2 rightly classified the hard-coded target and
thus did not consider the DGA component in 2/5 malware.

Given the low number of FNs (4) and the high accuracy
of 95% and 96% for DDR logic localization and D2 account
origin, respectively, R2D2 is ready for large-scale deployment.
Moreover, averaging a run time of 409 seconds, R2D2 can
quickly report details of DDR integration.

4.2 De-Manipulation Recipe Identification
Given 2 different implementations of the same algorithm, will
R2D2 still be able to identify that algorithm? Put simply,
will R2D2’s reference implementations (from Table 1) work
regardless of a malware’s implementation? Answering this
requires (1) comparing source code similarity to ensure all
algorithm implementations are different and (2) comparing
symbolic expression equivalence of all pairs of algorithms to
show that irrespective of implementation, de-manipulation
algorithms of the same class (e.g., all XOR decryptors) match
with high confidence.
Source Code Similarity. We chose up to 3 implementations
of algorithms in Table 1 from open-source software
repositories or libraries. Suppose we can show that symbolic
expression matching finds equivalence in algorithms of the
same class with differing implementations. If so, R2D2’s
approach will work irrespective of a malware’s
implementation. We compared all combinations of the 35
algorithm implementations using Moss [61], a software
similarity framework widely used in academia to detect code
plagiarism, which reported 0% match in all comparisons of
different implementations (1,190 comparisons). All
algorithms compared with themselves (35 comparisons) were
a 100% match. We present detailed results in Appendix B.
Symbolic Expression Matching. We compare all similar
algorithms (i.e., algorithms that rely on APIs are compared
with one another, see Table 3a, and others are likewise
compared, see Table 3b and Table 3c). A pairwise
comparison of expressions is not limited to 1 evaluation.
When expressions are compared, their concrete output
comparison is per path explored (§3.3). Since we specify a
symbolic input size of 8 bytes, the algorithm’s expressions

7

Table 3: De-Manipulation Algorithm Similarity.

AES DES DPAPI RC4

v1 v2 v1 v2 v1 v2 v1 v2

AES v1 100 100 0 0 0 0 0 0
v2 100 100 0 0 0 0 0 0

DES v1 0 0 100 100 0 0 0 0
v2 0 0 100 100 0 0 0 0

DPAPI v1 0 0 0 0 100 100 0 0
v2 0 0 0 0 100 100 0 0

RC4 v1 0 0 0 0 0 0 100 100
v2 0 0 0 0 0 0 100 100

(a) AES - RC4.

XOR Chr Sub S ⇆ I Chr Rot Str Prs
v1 v2 v3 v1 v2 v3 → ← v1 v2 v3 v1 v2

X
O

R v1 100 100 100 11 0 0 11 0 0 0 0 0 0
v2 100 100 100 0 0 0 11 0 0 0 0 0 0
v3 100 100 100 0 0 0 11 0 0 0 0 0 0

C
hr

Su
b v1 0 0 0 100 92 94 0 0 0 0 0 0 0

v2 0 0 0 86 100 84 11 0 0 0 0 0 0
v3 0 0 0 92 91 100 11 0 0 0 0 0 0

St
r,

In
t → 11 11 11 1 0 0 100 4 0 0 0 0 0

← 0 0 0 0 0 0 22 100 0 0 0 0 0

C
hr R
ot

v1 6 4 6 2 6 0 0 0 100 100 100 0 0
v2 0 0 0 0 0 0 1 0 100 100 100 0 0
v3 0 0 0 0 0 0 1 0 100 100 100 0 0

St
r

Pr
s v1 0 0 0 1 0 0 11 0 13 3 3 100 99

v2 0 0 0 2 0 0 11 0 19 2 3 99 100

(b) XOR - String Parsing (Str Prs).

Base16 Base32 Base64 Base85
v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3

B
16

v1 100 98 92 16 19 11 28 0 16 21 9 42
v2 89 100 72 15 8 23 50 51 52 32 14 7
v3 96 91 100 14 23 22 12 9 27 11 24 22

B
32

v1 12 11 14 100 97 98 62 68 64 1 22 13
v2 1 1 13 98 100 97 2 12 9 0 17 8
v3 13 21 16 92 83 100 3 9 22 13 4 3

B
64

v1 70 14 2 0 0 27 100 44 77 19 0 0
v2 1 16 4 3 4 4 97 100 100 21 14 5
v3 4 40 16 11 3 21 89 100 100 7 18 10

B
85

v1 17 45 46 23 42 62 41 37 19 100 91 93
v2 10 61 42 29 37 58 38 52 43 87 100 92
v3 32 15 29 22 12 33 19 27 20 89 92 100

(c) Base Decoders (16, 32, 64, 85).

could concretize to 2568, or 4.2 billion, possible inputs or
paths. Ideally, we would evaluate the entire input space, but
that is time prohibitive. So, we compare each pair for 2
hours. We find this to be sufficient because the ratio of
non-matches versus matches plateau and stabilizes for more
than 30 minutes within 2 hours, convincing us of the overall
percentage match. In the worse case, when Base16 is
compared with Base85 (Table 3c, Row 1, Column 4), it
plateaus at 85 minutes. We present a view of the plateau for
each set of comparisons in Appendix C.

We also found implementations of the same algorithm
that produce different outputs given the same input. This is
expected in algorithms that do not rely on built-in libraries
like decoders and the XOR decryptor, which are not
rigorously tested to ensure completeness or error handling.
Still, these differences are negligible compared to those with

other algorithm classes. To illustrate, Table 3c cells
represent the expression matching percentage. The majority
(474/5545) of comparisons of algorithms from different
classes result in 0% match. However, notice Base64 v1
compared with the other versions (Row 7). We expect them
to have a high match rate, even amid mismatching corner
cases. Our investigation revealed that the 44% and 77%
rates for v2 and v3 are due to error checking in v1. When
R2D2 forks at this error check, it will take 2 paths: (1)
successful return and (2) failure where null is returned. As
discussed previously, the symbolic data is constrained for
the second algorithm in the comparison based on exploring
the first algorithm. So, where v1 had 1 failure and 1 success,
v2 has less strict error checking and succeeded in both,
accounting for their low matching percentage. Conversely,
when Base64 v2 and v3 (Rows 8 and 9) are compared with
v1 (Column 7), they match at 97%, 89%, and 100%, since
the former does not have excessive error checking. Since all
implementations take 8 bytes as input, when v2 is explored
first and succeeds, the resulting constrained symbolic
expression used in v1 ensures that R2D2 takes the success
path in v1, resulting in a closer match.

Table 3c also shows an interesting trend within the Base
decoding classes (Base 16, etc.). We expect that 12/144
comparisons (all Base versions compared with themselves)
match at 100% (top left to bottom right diagonal of the
Base class comparisons). However, of the remainder, we only
observe 6/144 with a 0% match when we expect 108 with a
0% match (when 1 Base class is compared with another). Base
algorithms depend on a table of data for character translation.
As a result, all Base algorithms match to a certain extent
based on these tables, but not enough to deduce a confident
equivalence. There are other overlapping algorithms from
differing classes, but they are too low to be considered a
match. Lastly, we notice the ideal algorithm equivalence case
from Table 3a. Since 5/6 of the decryption algorithms in this
study rely on built-in libraries, their implementations are
very similar. Thus, R2D2 considers the algorithm identifier
when available to differentiate decryptors when their symbolic
expressions are identical. This ensures a more accurate match
and rightly distinguishes decryptors in Table 3a.

From each class, we select implementations that match
>90% within their class and <25% across the others (e.g., v1).
These are built into R2D2 as “reference implementations”, but
new algorithms can always be added to R2D2. These results
show that R2D2 can identify de-manipulating algorithms
with different implementations in malware.

4.3 De-Manipulation Recipe Identification
To test symbolic expression matching, we augment our ground
truth dataset with 2 non-DDR malware families (spora and
muldrop) that include cryptographic routines. Table 4 lists
our results, including a combination of the IO boundary
isolation and verification of the de-manipulation algorithm.
In all cases, the IO boundary and verified algorithm matched,

571/625 algorithms are compared with themselves.

8

Table 4: Validating De-Manipulation Recipe Identification.

Family # Algorithm TP FP FN
razy 5 String Parsing, Base64 5 0 0
doina 5 String Parsing 0 5 0
kryptik 5 String Parsing, Base64 5 0 0
comnie 5 Base64, Char Rotate 5 0 0

spora1 5 AES 5 0 0

muldrop1 5 RC4 5 0 1
Total 30 Acc. (89%) 25 5 1
1: Our investigation did not uncover DDR
malware decrypting rendezvous points.

i.e., there were no instances where multiple algorithms were
identified in the same boundary. Columns 1 and 2 lists the
malware family and the number of samples. Column 3 lists
the de-manipulation recipe. The final columns present the
accuracy metrics TP, FP, and FN. Overall, R2D2 correctly
identified the IO boundary and verified the de-manipulation
recipe for 25 malware with 89% accuracy.

Our investigation revealed 5 FPs. We expect data
manipulation of rendezvous points, but doina requests a
Google Drive text file containing a plaintext IP address.
However, R2D2 identified String Parsing. This occurs
because the malware checks for the IP address format using
string search routines, similar to what is needed for string
parsing. As a reminder, razy used string parsing to remove
the preceding))))) characters before it could use Base64 to
decode the remainder of the string (§2). In that case, string
parsing was integral to decoding, unlike in doina. R2D2 may
be prone to FPs when dealing with plaintext data, so
R2D2’s 89% accuracy is less reflective of the true impact of
de-manipulation recipe identification since plaintext
rendezvous points need no de-manipulation and authorities
will immediately recover the C&C address. Next, similar to
the FNs from Table 2, R2D2 encountered unresolved
symbolic constraints during the analysis of muldrop,
meaning that it could not leverage constraint chaining for
description source-to-sink mapping (§3.3). However, given
the low number of FPs and FNs, R2D2 maintains a high
accuracy of de-manipulation recipe identification.

5 INSIGHTS INTO DDR MALWARE
In this section, we discuss our findings from deploying R2D2
on 100K malware. This dataset was built by downloading
Windows executables with more than one anti-virus (AV)
engine detection and an upload date between 2017 and 2022 to
VirusTotal [62]. The dataset parameters are derived from Zhu
et al. [63], who provided a comprehensive study of VirusTotal
labeling dynamics. Since it is difficult to distinguish traffic
generated by DDR malware from benign network traffic, we
also ensured that each sample connects to at least 1 endpoint
listed in Tranco [30] to validate R2D2’s ability to correctly
distinguish D2 connections that appear benign.

Now, we present the DDR malware found (§5.1) and the de-
manipulation algorithms identified (§5.2). To provide context

Table 5: DDR Malware and Dead Drops.

Dead Drops
Domains

#Fam #Mal D2A Origin
HC DGA

blockchain.info 59 1,888 1,888 0
blockcypher.com 41 1,437 1437 0
pastebin.com 30 6,053 6,053 0
bitaps.com 16 722 722 0
docs.google.com 10 616 616 0
coinmarketcap.com 10 50 50 0
googleusercontent.com 9 151 151 0
twitter.com 8 34 22 12
blockchain.com 7 5 5 0
dropbox.com 6 204 204 0
blockr.io 5 200 200 0
github.com 3 7 7 0
blockstream.info 3 3 3 0
wordpress.com 2 4 4 0
drive.google.com 1 3 3 0

Total 154 10,1701 10,158 12
D2A: D2 Account, HC: Hard-Coded,
DGA: DGA+DDR Hybid

1: This is the sum of unique DDR malware but not the
sum of the above column. Most malware using
blockchain D2s use more than 1 D2 as a backup, so
they appear in multiple rows.

for the impact of these findings, we geolocate rendezvous
points and dead drops (§5.3) and also provide a case study
to illustrate how R2D2 enables DDR malware counteraction
(§5.4). Finally, we discuss our efforts to counteract DDR
malware in collaboration with service providers (§5.5).

5.1 DDR Malware Findings
Table 5, Column 1 lists the 15 D2s identified. Columns 2-3
list the number of malware families and variants. Column
D2A Origin lists the number of malware containing hard-
coded (traditional DDR) versus DGA (hybrid DDR) accounts.
R2D2 identified 10,170 DDR malware across 154 families that
maliciously use 275 accounts in our dataset.

Blockchain.info D2 represents the most malware families
(Row 1) at 1,888 (≈38% of families and ≈19% of malware)
in our dataset. In fact, there are 7 different blockchain D2s
(Rows 1-2, 4, 6, 9, 11, and 13), totaling 3,098 DDR malware.
Interestingly, 1,054 of those use more than 1 D2 for backup,
the only category of DDR we found using backups. However,
each malware uses 1 wallet ID to retrieve the rendezvous
point. Appendix D lists of the 75 identified wallet IDs.

Pastebin is the third most prevalent service in our
dataset, accounting for ≈20% of malware families across
6,053 malware (≈59%). Pastebin has long been used for
malicious purposes [64], but it has generally been used to
host stolen content or dropper malware. This work is among
the first to expose its pervasiveness as a dead drop. R2D2
also identified Twitter, Google, Github, and Dropbox.
However, they account for fewer occurrences than expected,
totaling 1,019 or ≈10% of all DDR malware. Several works
have studied the abuse of these services (§6) though none

9

Table 6: De-Manipulation Algorithms Mapped to DDRs.

#De-Manipulation Algos/Malware

Dead Drops St
r

Pr
s

B
as

e6
4

B
as

e1
6

In
t

to
St

r

X
O

R

C
ha

r
R

ot

Pl
ai

n
Te

xt

Total

Blockchain 3,098 0 3,098 3,098 0 0 0 9,294
Pastebin 6,053 4,813 0 0 872 0 368 11,738
Google Docs 616 479 0 0 0 123 137 1,095
GContent1 151 151 0 0 0 67 0 302
Google Drive 3 0 0 0 0 0 3 3
Twitter 34 34 0 0 0 0 0 68
Dropbox 204 0 0 0 204 204 0 408
GitHub 7 0 7 0 7 7 0 21
WordPress 4 4 0 0 0 0 0 8
Total 10,170 5,481 3,105 3,098 872 211 508 22,9372

1: Google User Content.
2: An average of 2.25 de-manipulation algorithms per malware.

considered D2s, so malware authors are seemingly using less
popular internet services to reduce suspicion.

Next, 12 DDR malware, 0.12% of our dataset, use a DGA
to generate Twitter accounts (Column D2A Origin). This
is the fugrafa malware and is similar to miniduke [37] in
its DDR capability. Although this malware complexity can
pose challenges for authorities, the plethora of works that
counteract DGA malware may motivate malware authors to
opt for the traditional and not the hybrid DDR approach.

Recently, Netskope reported that over 66% of malware
downloads come from internet services [31]. However, what
was unknown is how many use these services as D2s, which
R2D2 finds to be 10,170, or ≈10% of our dataset.

5.2 De-Manipulation Algorithms Identified
Table 6 maps de-manipulation algorithms with their
corresponding D2. Column 1 lists the dead drops, and
Columns 2-7 lists the de-manipulation algorithms. Of 9
decoders from Table 1, R2D2 found 5 being used by
malware. Of the 5 cryptographic algorithms we built into
R2D2, only XOR is used by malware. This is expected as
encrypting rendezvous points requires malware authors to
trade agility for more complex malware. This is the opposite
of the trend that we and others [40], [65] have observed.

From the Total row, the most common de-manipulation
algorithms are String Parsing and Base64 decoding,
occurring in 10,170 and 5,481 DDR malware, respectively.
Base64 provides obfuscation and ensures data goes
unmodified during transport, adding to its popularity. We
also notice that D2s hosting visible rendezvous points (e.g.,
Twitter’s publicly viewable messages) generally use data
manipulation. For example, Pastebin DDR malware prefer
String Parsing (in 6,053 samples), Base64 (in 4,813 samples),
and XOR (in 872 samples), obscuring the public posts.

D2s like Google Drive host content that can only be viewed
if a user has the exact URL to access it, which is often a long
string of randomized characters. Thus, malware authors are
more likely to store plaintext rendezvous points on these D2s,

Figure 6: Worldview of Geolocalized Rendezvous Points.

and R2D2 identified ≈5% of DDR malware doing so, Column
8 (Plain Text). Notably, 508 samples in Column 8 are also
counted as String Parsing in Column 2. From §4.3, R2D2
identifies String Parsing for plaintext rendezvous points.

Finally, de-manipulation becomes trivial if the correct
algorithm is identified. Yet, malware authors use them
because it is difficult to identify the manipulation algorithm,
especially when multiple are used. Column Total reveals
that each malware uses, on average, 2.25 de-manipulation
algorithms (22,937/10,170). R2D2 can detect this layered
approach so authorities can de-manipulate these more
complex rendezvous points toward counteraction.

5.3 Geolocalized Rendezvous Points
To illustrate the benefits of rendezvous point retrieval and
de-manipulation provided by R2D2, Figure 6 shows the
geolocation of C&C servers found behind the resolved and
decoded rendezvous points at the time of this study. The
figure includes dots of various colors representing a country
where a C&C server is based and the number of C&C
servers per country. R2D2 geolocalized the C&C servers via
the WhoisXML API [66], which includes 4+ billion domains
and subdomains and records for over 99% of IPs in use.

From Figure 6, we notice that the United States accounts
for the most C&C servers, with 124 unique C&C servers
found. Again, this is not the victim D2 service but the
subsequent C&C server that the decoded rendezvous point
points to. The US may seem like an outlier compared to the
quantity of C&C servers found worldwide, but existing
research agrees that attackers evade attribution and
sometimes detection by distributing their C&C servers near
their intended targets [67].

Digging deeper into these results, we observe the trends
between the abused D2s and their C&C server location. As
shown in Table 7, Column 3 (US) reveals that all services

10

Table 7: C&C Server Count Across Dead Drops by Country.

Dead Drops Tu
rk

ey
U

S
N

et
he

rl
an

ds
B

ul
ga

ri
a

C
hi

na
Fr

an
ce

Ir
el

an
d

R
us

sia
G

er
m

an
y

U
K

Po
la

nd
H

un
ga

ry
A

us
tr

ia
A

us
tr

al
ia

Ja
pa

n
La

tv
ia

R
om

an
ia

C
yp

ru
s

Si
ng

ap
or

e
M

on
ac

o
Fi

nl
an

d
B

ri
tis

h
V

I

Blockchain 1 62 22 15 2 15 2 5 11 7 2 5 2 5 2 1 1 4 2 3 1 1
Pastebin - 24 6 - 3 - 2 5 2 - - - - - - - - - - - - -
Google Docs - 7 -
GContent - 10 - - 1 2 - - - 3 - - - - - - - - - - - -
Google Drive - 1 -
Twitter - 7 - - - - - - - 1 - - - - - - - - - - - -
Dropbox - 7 1 - 1 2 - - - 2 - - - - - - - - - - - -
GitHub - 4 -
WordPress - 2 -

that enable D2s lead to C&C servers in the US. Next, the
Netherlands and France (Columns 4 and 7) show the second
most C&C servers using dead drops at 29 and 19,
respectively. Although Pastebin is used by most DDR
malware samples (6,053 from Table 5), they resolve to a
smaller set of C&C servers (42). The geological distribution
shows that blockchain apps are used in all countries
identified, with 171 C&C servers located. This is expected as
bitcoin transactions attract criminals who erroneously rely
on its anonymity [68].

5.4 Razy Reloaded: A Case Study
The razy case study illustrates the capabilities authorities
have when armed with R2D2. Now, authorities have several
options to counteract DDR malware: (1) de-manipulate the
rendezvous point to locate and seize the C&C server and
then request that the service provider disables the account;
(2) track C&C server migration, i.e., after C&C server seizure,
the botnet orchestrators can migrate to a new C&C server
by updating the rendezvous point. Authorities can track
migration if service providers leave the account active for
botnet monitoring. Lastly, authorities, in collaboration with
service providers, can (3) replace the rendezvous point to
sinkhole or take over the botnet.

Table 8 shows R2D2’s analysis of razy and provides data
to pursue either of the 3 counteraction options. Firstly,
DDR logic localization begins with a connection to Twitter
and the pidoras6 account (Row 1). Razy then retrieves the
rendezvous point from the pidoras6 post and begins
de-manipulation. As shown in Row 2, R2D2 identifies String
Parsing and Base64 decoding for the de-manipulation recipe.
To correctly apply the recipe, R2D2 notes that String
Parsing corresponds the first five bytes ([0 : 4]) of the
rendezvous point and Base64 corresponds to the remainder
([5 : 𝑛]). For String parsing, R2D2 identified 5 leading close
parentheses symbols))))) hard-coded into the malware to
be parsed from the rendezvous point. Since the D2 endpoint
is still live, authorities can retrieve the rendezvous point and
de-manipulate it to https://w0rm.in/join/join.php.
Authorities are now armed (Row 3) to seize the C&C server.

For counteraction open 1, using the C&C server address,
authorities can locate the hosting provider and request
support in disabling connectivity. This approach is widely

Table 8: R2D2’s Razy Analysis Results.

DDR Logic
Localization

Traditional DDR malware (not hybrid)
http://twitter.com/pidoras6

De-Manipulation
Recipe

String Parsing, Base64 Decoding
Bytes [0:4] Bytes [5:n]
))))) aHR0cHM6Ly93MHJtLmluL2pvaW4vam9pbi5waHA=

Counteraction
Options

(1-2) https://w0rm.in/join/join.php
(3) Prepend))))) to

Ym90bmV0LnNpbmtob2xlLmNvbQ==1

1: botnet.sinkhole.com

used [8], [23]–[26], [69]. At the same time, authorities can
request that service providers disable the D2 account to
prevent botnet resurgence. For option 2, instead of
requesting the D2 account be disabled, authorities monitor
the D2 account after C&C server seizure to observe any new
botnet activity. Botnet monitoring has previously been
shown effective at information gathering toward disruption
or takedodwn [40]BDSdo we have more for this cite list?.
Similarly, authorities can monitor DDR botnets to
understand the geographic scale of infection or indicators
that may lead to botnet orchestrator attribution.

For option 3, authorities can leverage the recipe in
reverse, i.e., use encoding to generate a sinkhole address in
the correct format to masquerade as the rendezvous point.
For example, if authorities want to direct bots to
botnet.sinkhole.com, they would use Base64 encoding
resulting in Ym90bmV0LnNpbmtob2xlLmNvbQ==. Finally,
authorities would prepend the parsed string to the Base64
encoded string:)))))Ym90bmV0LnNpbmtob2xlLmNvbQ==. In
conjunction with C&C server seizure, this approach not only
dismantles the existing botnet but redirects new bots to a
dead-end preventing further botnet proliferation.

R2D2 enables authorities to identify DDR malware, extract
evidence of malicious internet platform use for cooperation
from providers, and pursue counteraction.

5.5 Towards Remediation
We lack the authority to pursue domain seizures or sinkholing,
so we sought cooperation from the affected service providers.
Counteraction Confirmed. R2D2 found 275 D2 accounts,
and we reported them to the service providers, who
confirmed our findings and took action against 9,155 DDRs
(90% of our total findings). Specifically, Pastebin disabled
(Appendix E) the offending accounts, resulting in at least
6,053 infected victim systems unable to communicate with
the D2 account for migration once the C&C server is added
to a block list (60% of all DDR malware that R2D2
identified). Moreover, any new cots cannot access the C&C
server. Similarly, WordPress also responded to our findings
and removed the offending accounts from their platform
(Appendix E). Although WordPress DDR malware only
accounted for 0.04% of DDR malware discovered, it
illustrates the range of options malware authors have.

For the 3,098 DDR malware (30%) that use bitcoin wallets
to retrieve rendezvous points, they must connect to 1 of many

11

Figure 7: Response From Twitter.

blockchain apps (e.g., blockchain.info) to search and read
the blockchain. Disk space requirements make downloading
the entire blockchain to the victim system impractical. Thus,
although blockchains are immutable, these apps control access
to view blockchain transactions. A practical solution for
remediation is to flag wallet IDs used in cybercrime and block
viewing access to prevent malware from retrieving blockchain
information. To this end, we submitted the 75 wallets IDs
(Appendix D) that R2D2 discovered to BitcoinAbuse [70] to
publicly document that they have been used in malware.
Counteraction In Progress. Service providers are faced with
a difficult task: weighing freedom of expression while
ensuring users adhere to the terms and conditions [71], [72]
and also ensuring they do not unnecessarily block content
on their platforms. Although providers are culpable for
hosting malicious content [73], we noted the difficulty of
convincing providers that harmless-looking content hosted
on their platforms drives malware. For instance, while
Pastebin quickly removed offending content, WordPress
required more correspondence to convince them of malicious
platform use. We also encountered cases where providers
were uncooperative in remediating DDR behavior on their
platform. Since service providers maintain sole control, we
are limited to their actions against DDR botnets. Notably,
Twitter negatively responded to our findings and did not
remove the malicious account since it “hasn’t broken our
safety policies” as illustrated by their response in Figure 7.
Of the remainder, the accounts for 774 malware were
already taken down at the time of our study. We are
awaiting a response from the service providers hosting the
remaining 241 DDRs.

6 RELATED WORK
Botnet Counteraction. Existing methods block malicious
network traffic to counteract botnets [6]–[11], [39], [40].
However, traffic generated by DDR malware appears
benign [1], [2], and many malware often access benign
websites to test internet connectivity [6]. So, even if prior
works are extended to target malware that rely on benign

network traffic, they cannot distinguish D2 traffic from other
benign traffic. Other works propose solutions to recover
encoded C&C URLs from a binary [12]–[14]. However, none
of these can recover dynamically resolved C&C server URLs
or IPs, preventing their application to DDR malware.
Subsequent research have counteracted DGA
malware [23]–[26], but these approaches focus on in-binary
C&C server address generation algorithms. Unlike DGA
malware, DDR malware C&C server addresses are solely
hosted outside of the binary, preventing the transference of
DGA counteraction techniques in this emerging domain.
Malicious Internet Platform Use. Existing research
investigates social network abuse [74]–[76]. Ohters have
analyzed network traffic to identify abused cloud
repositories [77] or cloud app abuse to enable
botnets [27]–[29], [78]. These works did not pursue
cross-domain analysis (malware and abused internet
platform) to fully understand DDR malware or
counteraction measures. Next, researchers also investigated
malware using bitcoin wallets or cloud apps to coordinate
C&C server access [3]–[5], [33], [37], [55], [57], [79]. Still, they
focus on one malware family or opt for network or bitcoin
transaction analysis. R2D2 identifies this capability from
malware analysis, which is necessary to gain full insights
into the attack. Moreover, R2D2 also provides authorities
with actionable means to counteract DDR botnets.
Concolic Analysis. Concolic analysis is used to find software
bugs [41], [80], [81], generate test cases [82]–[84], support
dynamic analysis [85]–[87], and taint analysis [88]–[91].
However, pure concolic analysis does not allow analysis
irrespective of malware defensive evasion or endpoint
liveness. Conversely, R2D2 leverages modeled APIs to
ensure continued execution and DDR logic localization.
Next, other works have used the input to output domain
mapping for binary similarity and bug hunting via symbolic
analysis [92]–[95] or dynamic analysis [96]–[99]. However,
R2D2 moves beyond comparing concrete input and output
values. After identifying areas of interest in malware, R2D2
extracts the symbolic expression within a boundary defined
by input and output mappings to match symbolic
expressions for de-manipulation recipe identification.

7 CONCLUSION
This paper used R2D2 to comprehensively study the
under-explored DDR technique and analyzed 100K malware
spanning back 5 years. R2D2 revealing 10,170 DDR malware
from 154 families. R2D2 also identified rendezvous point
de-manipulation recipes enabling authorities to uncover
C&C server addresses, with String Parsing and Base64
being the most common. We reported our findings to service
providers, who took action against the 9,155 DDRs (90% of
DDR malware discovered). Of the remainder, service
providers previously took down the accounts for 774
malware, and we are awaiting a response concerning 241
DDRs.

12

REFERENCES
[1] Hackers buying space from major cloud providers to distribute

malware, https://www.securitymagazine.com/articles/96900-
hackers-buying-space-from-major-cloud-providers-to-distrib
ute-malware, [Accessed: 2022-03-12].

[2] Cloud and Threat Report: Cloudy with a Chance of Malware,
https://www.netskope.com/blog/cloud-and-threat-report-
cloudy-with-a-chance-of-malware, [Accessed: 2022-03-12].

[3] T. Taniguchi, H. Griffioen, and C. Doerr, “Analysis and
Takeover of the Bitcoin-Coordinated Pony Malware,” in
Proceedings of the 16th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), Hong
Kong, China, Jun. 2021.

[4] S. Pletinckx, C. Trap, and C. Doerr, “Malware Coordination
Using the Blockchain: An Analysis of the Cerber Ransomware,”
in 2018 IEEE Conference on Communications and Network
security (CNS), 2018.

[5] Z. Huang, J. Huang, and T. Zang, “Leopard: Understanding
the Threat of Blockchain Domain Name Based Malware,” in
International Conference on Passive and Active Network
Measurement, Springer, 2020, pp. 55–70.

[6] G. Jacob, R. Hund, C. Kruegel, and T. Holz, “Jackstraws:
Picking Command and Control Connections from Bot Traffic,”
in Proceedings of the 20th USENIX Security Symposium
(Security), San Francisco, CA, Aug. 2011.

[7] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou II, and
D. Dagon, “Detecting Malware Domains at the Upper DNS
Hierarchy,” in Proceedings of the 20th USENIX Security
Symposium (Security), San Francisco, CA, Aug. 2011.

[8] B. Krebs, U.S. Cyber Command Behind Trickbot Tricks, https:
//krebsonsecurity.com/2020/10/report-u-s-cyber-command-
behind-trickbot-tricks/, [Accessed: 2020-08-22].

[9] I. Arghire, TrickBot Botnet Survives Takedown Attempt, h
ttps : / / www . securityweek . com / trickbot - botnet - survives -
takedown-attempt, [Accessed: 2020-12-10].

[10] J. Menn, Court orders seizure of ransomware botnet controls
as U.S. election nears, https://www.reuters.com/article/us-
uselection-cyber-botnet/court-orders-seizure-of-ransomware-
botnet - controls - as - u - s - election - nears - idUSKBN26X1G2,
[Accessed: 2022-07-18].

[11] C. Page, Rsocks, A popular proxy service, was just seized by
the DOJ, https://techcrunch.com/2022/06/17/rsocks-proxy-
seized-justice-department/, [Accessed: 2022-07-18].

[12] C. Zuo and Z. Lin, “Smartgen: Exposing Server Urls of Mobile
Apps with Selective Symbolic Execution,” in Proceedings of
the 26th International World Wide Web Conference (WWW),
Perth, Australia, 2017.

[13] L. Glanz, P. Müller, L. Baumgärtner, et al., “Hidden in Plain
Sight: Obfuscated Strings Threatening Your Privacy,” in
Proceedings of the 15th ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
Taipei, Taiwan, Oct. 2020, pp. 694–707.

[14] M. Y. Wong and D. Lie, “Tackling Runtime-Based Obfuscation
in Android with TIRO,” in Proceedings of the 27th USENIX
Security Symposium (Security), Baltimore, MD, Aug. 2018.

[15] Fast Flux Networks Working and Detection, https://resources.
infosecinstitute . com / topic / fast - flux - networks - working -
detection-part-1, [Accessed: 2022-03-12].

[16] Dynamic Res.: Fast Flux DNS, https://attack.mitre.org/
techniques/T1568/001/, [Accessed: 2022-03-12].

[17] Fast Flux networks: What are they and how do they work?
https ://www.welivesecurity .com/2017/01/12/fast - flux-
networks-work, [Accessed: 2022-03-12].

[18] Dynamic Res.: DNS Calculation, https://attack.mitre.org/
techniques/T1568/003/, [Accessed: 2022-03-12].

[19] Whois Numbered Panda, https://www.crowdstrike.com/blog/
whois-numbered-panda/, [Accessed: 2022-03-12].

[20] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and
E. Gerhards-Padilla, “A Comprehensive Measurement Study
of Domain Generating Malware,” in Proceedings of the 25th
USENIX Security Symposium (Security), Austin, TX, Aug.
2016, pp. 263–278.

[21] M. Antonakakis, R. Perdisci, Y. Nadji, et al., “From
Throw-away Traffic to Bots: Detecting the Rise of DGA-based
Malware,” in Proceedings of the 21st USENIX Security
Symposium (Security), Bellevue, WA, Aug. 2012,
pp. 491–506.

[22] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure:
Finding malicious domains using passive dns analysis.,” in
Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb.
2011, pp. 1–17.

[23] V. Le Pochat, S. Maroofi, T. Van Goethem, et al., “A
Practical Approach for Taking Down Avalanche Botnets
Under Real-World Constraints,” in Proceedings of the 2020
Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2020.

[24] Y. Nadji, M. Antonakakis, R. Perdisci, D. Dagon, and W. Lee,
“Beheading Hydras: Performing Effective Botnet Takedowns,”
in Proceedings of the 20th ACM Conference on Computer
and Communications Security (CCS), Berlin, Germany, Oct.
2013.

[25] R. Wainwright and F. J. Cilluffo, Responding to Cybercrime
at Scale: Operation Avalanche — A Case Study, http://www.
jstor.org/stable/resrep20752.

[26] B. Stone-Gross, M. Cova, L. Cavallaro, et al., “Your Botnet is
my Botnet: Analysis of a Botnet Takeover,” in Proceedings of
the 16th ACM Conference on Computer and Communications
Security (CCS), Chicago, Illinois, Nov. 2009, pp. 635–647.

[27] M. Torkashvan and H. Haghighi, “CB2C: A Cloud-Based
Botnet Command and Control,” Indian Journal of Science
and Technology, 2015.

[28] W. Lu, M. Miller, and L. Xue, “Detecting Command and
Control Channel of Botnets in Cloud,” in International
Conference on Intelligent, Secure, and Dependable Systems
in Distributed and Cloud Environments, Springer, 2017,
pp. 55–62.

[29] S. Zhao, P. P. Lee, J. C. Lui, X. Guan, X. Ma, and J. Tao,
“Cloud-Based Push-Styled Mobile Botnets: A Case Study of
Exploiting the Cloud to Device Messaging Service,” in
Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2012.

[30] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen, “Tranco: A Research-Oriented
Top Sites Ranking Hardened Against Manipulation,” in
Proceedings of the 2019 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb.
2019.

[31] Netskope Threat Research Reveals More Than Two-Thirds of
Malware Downloads Came From Cloud Apps in 2021, https://
www.netskope.com/press-releases/netskope-threat-research-
reveals-more-than-two-thirds-of-malware-downloads-came-
from-cloud-apps-in-2021, [Accessed: 2022-03-12].

[32] Read The Manual: A Guide to the RTM Banking Trojan,
https://www.welivesecurity.com/wp-content/uploads/2017/
02/Read-The-Manual.pdf, [Accessed: 2022-03-12].

[33] APT17: Hiding in Plain Sight - FireEye and Microsoft
Expose Obfuscation Tactic, https://www.fireeye.com/current-
threats/apt-groups/rpt-apt17.html, [Accessed: 2021-02-21.

[34] Attack Matrix for Enterprise, https : / / attack . mitre . org/,
[Accessed: 2021-11-06].

[35] Web Service, https://attack.mitre.org/techniques/T1102/,
[Accessed: 2021-11-06].

[36] Analyzing malware by API calls, https://blog.malwarebytes.
com/threat- analysis/2017/10/analyzing- malware- by- api-
calls/, [Accessed: 2022-03-06].

[37] Operation Ghost. The Dukes aren’t back — they never left,
https://www.welivesecurity.com/wp-content/uploads/2019/
10/ESET_Operation_Ghost_Dukes.pdf, [Accessed: 2022-02-
26.

[38] B. Cheng, J. Ming, J. Fu, et al., “Towards Paving the Way
for Large-scale Windows Malware Analysis: Generic Binary
Unpacking with Orders-of-magnitude Performance Boost,” in
Proceedings of the 25th ACM Conference on Computer and
Communications Security (CCS), Toronto, ON, Canada, Oct.
2018.

[39] O. Alrawi, M. Ike, M. Pruett, et al., “Forecasting Malware
Capabilities From Cyber Attack Memory Images,” in
Proceedings of the 30th USENIX Security Symposium
(Security), Virtual Conference, Aug. 2021.

[40] J. Fuller, R. P. Kasturi, A. Sikder, et al., “C3PO: Large-Scale
Study of Covert Monitoring of C&C Servers via
Over-Permissioned Protocol Infiltration,” in Proceedings of
the 28th ACM Conference on Computer and

13

https://www.securitymagazine.com/articles/96900-hackers-buying-space-from-major-cloud-providers-to-distribute-malware
https://www.securitymagazine.com/articles/96900-hackers-buying-space-from-major-cloud-providers-to-distribute-malware
https://www.securitymagazine.com/articles/96900-hackers-buying-space-from-major-cloud-providers-to-distribute-malware
https://www.netskope.com/blog/cloud-and-threat-report-cloudy-with-a-chance-of-malware
https://www.netskope.com/blog/cloud-and-threat-report-cloudy-with-a-chance-of-malware
https://krebsonsecurity.com/2020/10/report-u-s-cyber-command-behind-trickbot-tricks/
https://krebsonsecurity.com/2020/10/report-u-s-cyber-command-behind-trickbot-tricks/
https://krebsonsecurity.com/2020/10/report-u-s-cyber-command-behind-trickbot-tricks/
 https://www.securityweek.com/trickbot-botnet-survives-takedown-attempt
 https://www.securityweek.com/trickbot-botnet-survives-takedown-attempt
 https://www.securityweek.com/trickbot-botnet-survives-takedown-attempt
 https://www.reuters.com/article/us-uselection-cyber-botnet/court-orders-seizure-of-ransomware-botnet-controls-as-u-s-election-nears-idUSKBN26X1G2
 https://www.reuters.com/article/us-uselection-cyber-botnet/court-orders-seizure-of-ransomware-botnet-controls-as-u-s-election-nears-idUSKBN26X1G2
 https://www.reuters.com/article/us-uselection-cyber-botnet/court-orders-seizure-of-ransomware-botnet-controls-as-u-s-election-nears-idUSKBN26X1G2
 https://techcrunch.com/2022/06/17/rsocks-proxy-seized-justice-department/
 https://techcrunch.com/2022/06/17/rsocks-proxy-seized-justice-department/
https://resources.infosecinstitute.com/topic/fast-flux-networks-working-detection-part-1
https://resources.infosecinstitute.com/topic/fast-flux-networks-working-detection-part-1
https://resources.infosecinstitute.com/topic/fast-flux-networks-working-detection-part-1
https://attack.mitre.org/techniques/T1568/001/
https://attack.mitre.org/techniques/T1568/001/
https://www.welivesecurity.com/2017/01/12/fast-flux-networks-work
https://www.welivesecurity.com/2017/01/12/fast-flux-networks-work
https://attack.mitre.org/techniques/T1568/003/
https://attack.mitre.org/techniques/T1568/003/
https://www.crowdstrike.com/blog/whois-numbered-panda/
https://www.crowdstrike.com/blog/whois-numbered-panda/
http://www.jstor.org/stable/resrep20752
http://www.jstor.org/stable/resrep20752
https://www.netskope.com/press-releases/netskope-threat-research-reveals-more-than-two-thirds-of-malware-downloads-came-from-cloud-apps-in-2021
https://www.netskope.com/press-releases/netskope-threat-research-reveals-more-than-two-thirds-of-malware-downloads-came-from-cloud-apps-in-2021
https://www.netskope.com/press-releases/netskope-threat-research-reveals-more-than-two-thirds-of-malware-downloads-came-from-cloud-apps-in-2021
https://www.netskope.com/press-releases/netskope-threat-research-reveals-more-than-two-thirds-of-malware-downloads-came-from-cloud-apps-in-2021
https://www.welivesecurity.com/wp-content/uploads/2017/02/Read-The-Manual.pdf
https://www.welivesecurity.com/wp-content/uploads/2017/02/Read-The-Manual.pdf
https://www.fireeye.com/current-threats/apt-groups/rpt-apt17.html
https://www.fireeye.com/current-threats/apt-groups/rpt-apt17.html
https://attack.mitre.org/
https://attack.mitre.org/techniques/T1102/
https://blog.malwarebytes.com/threat-analysis/2017/10/analyzing-malware-by-api-calls/
https://blog.malwarebytes.com/threat-analysis/2017/10/analyzing-malware-by-api-calls/
https://blog.malwarebytes.com/threat-analysis/2017/10/analyzing-malware-by-api-calls/
https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf
https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf

Communications Security (CCS), Seoul, South Korea, Nov.
2021.

[41] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea,
“Selective Symbolic Execution,” in Proceedings of the 5th
Workshop on Hot Topics in System Dependability (HotDep),
Estoril, Portugal, Jun. 2009.

[42] H. Asghari, M. Ciere, and M. J. Van Eeten, “Post-mortem of
a Zombie: Conficker Cleanup after Six Years,” in Proceedings
of the 24th USENIX Security Symposium (Security),
Washington, DC, Aug. 2015, pp. 1–16.

[43] J. Gao and S. S. Lumetta, “Loop Path Reduction by State
Pruning,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE),
IEEE, 2018, pp. 838–843.

[44] A. Küchler, A. Mantovani, Y. Han, L. Bilge, and
D. Balzarotti, “Does Every Second Count? Time-Based
Evolution of Malware Behavior in Sandboxes,” in Proceedings
of the 2021 Annual Network and Distributed System
Security Symposium (NDSS), Virtual Conference, Feb. 2021.

[45] Lazarus Targets Latin American Financial Companies, https:
/ / www . trendmicro . com / en _ us / research / 18 / k / lazarus -
continues-heists-mounts-attacks-on-financial-organizations-
in-latin-america.html, [Accessed: 2022-11-15].

[46] Double Dragon - APT41, a Dual Espionage and Cyber Crime
Operation, https://content.fireeye.com/apt- 41/rpt- apt41,
[Accessed: 2022-03-06].

[47] Monsoon – Analysis of an APT Campaign, https://www.
forcepoint.com/sites/default/files/resources/files/forcepoint-
security-labs-monsoon-analysis-report.pdf, [Accessed: 2022-03-
06].

[48] Understanding the Patchwork Cyberespionage Group, https:
//documents.trendmicro.com/assets/tech-brief-untangling-
the-patchwork-cyberespionage-group.pdf, [Accessed: 2022-03-
06].

[49] Bronze Butler Targets Japanese Enterprises, https://www.
secureworks.com/research/bronze- butler- targets- japanese-
businesses, [Accessed: 2022-03-06].

[50] Explained: Spora ransomware, https://www.malwarebytes.
com/blog/news/2017/03/spora-ransomware, [Accessed: 2022-
11-15].

[51] Operation Endtrade: Tick’s Multi-Stage Backdoors for
Attacking Industries and Stealing Classified Data,
https://documents.trendmicro.com/assets/pdf/Operation-
ENDTRADE-TICK-s-Multi-Stage-Backdoors-for-Attacking-
Industries - and - Stealing - Classified - Data . pdf, [Accessed:
2022-11-15].

[52] Analysis of TeleBots’ cunning backdoor, https://www.wel
ivesecurity.com/2017/07/04/analysis-of - telebots-cunning-
backdoor/, [Accessed: 2022-11-15].

[53] Invisimole: The Hidden Part of the Story Unearthing
Invisimole’s Espionage Toolset and Strategic Cooperations,
https : / / www . welivesecurity . com / wp -
content/uploads/2020/06/ESET_InvisiMole.pdf, [Accessed:
2022-11-15].

[54] Pony’s C&C Servers Hidden Inside the Bitcoin Blockchain,
https://research.checkpoint.com/2019/ponys- cc- servers-
hidden-inside-the-bitcoin-blockchain/, [Accessed: 2022-03-06].

[55] Casbaneiro: Dangerous Cooking with a Secret Ingredient,
https://www.welivesecurity.com/2019/10/03/casbaneiro-
trojan-dangerous-cooking/, [Accessed: 2022-03-06].

[56] Multigrain - Point of Sale Attackers Make an Unhealthy
Adition to the Pantry, https://www.fireeye.com/blog/threat-
research/2016/04/multigrain_pointo.html, [Accessed: 2021-11-
06].

[57] The Dropping Elephant - Aggressive Cyber-Espionage in the
Asian Region, https://securelist.com/the-dropping-elephant-
actor/75328/, [Accessed: 2022-03-06].

[58] Gustuff Banking Botnet Targets Australia, https : / / blog .
talosintelligence.com/2019/04/gustuff-targets-australia.html,
[Accessed: 2022-03-06].

[59] Biopass RAT: New Malware Sniffs Victims via Live
Streaming,
https://www.trendmicro.com/en_us/research/21/g/biopass-
rat- new- malware- sniffs - victims- via- live- streaming.html,
[Accessed: 2021-11-06].

[60] Malware Campaign Targets South Korean Banks, https://blog.
trendmicro . com / trendlabs - security - intelligence / malware -

campaign-targets-south-korean-banks-uses-pinterest-as-cc-
channel/, [Accessed: 2021-11-06].

[61] A System for Detecting Software Similarity, https://theory.
stanford.edu/~aiken/moss/, [Accessed: 2022-02-26.

[62] VirusTotal, https://www.virustotal.com/, [Accessed: 2022-1-
5].

[63] S. Zhu, J. Shi, L. Yang, et al., “Measuring and Modeling the
Label Dynamics of Online Anti-Malware Engines,” in
Proceedings of the 29th USENIX Security Symposium
(Security), Virtual Conference, Aug. 2020.

[64] The Malicious Use of Pastebin, https://www.fortinet.com/
blog/threat- research/malicious-use-of -pastebin, [Accessed:
2022-03-12].

[65] How malware writers’ laziness is helping one startup predict
attacks before they even happen, https://www.zdnet.com/
article/how-malware-writers-laziness-is-helping-one-startup-
predict-attacks-before-they-even-happen/, [Accessed: 2022-1-
16].

[66] WhoisXML API, https://whois.whoisxmlapi.com/, [Accessed:
2022-11-10].

[67] Malware C&C Servers Found in 184 Countries, https ://
threatpost.com/malware-cc-servers-found-in-184-countries/
99870/, [Accessed: 2022-12-11].

[68] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll,
and E. W. Felten, “Sok: Research Perspectives and Challenges
for Bitcoin and Cryptocurrencies,” in Proceedings of the 36th
IEEE Symposium on Security and Privacy (S&P), San Jose,
CA, May 2015, pp. 104–121.

[69] C. Rossow, D. Andriesse, T. Werner, et al., “SoK:
P2pwned-modeling and Evaluating the Resilience of
Peer-to-peer Botnets,” in Proceedings of the 34th IEEE
Symposium on Security and Privacy (S&P), San Francisco,
CA, May 2013, pp. 97–111.

[70] Bitcoin Abuse Database, https://www.bitcoinabuse.com/,
[Accessed: 2022-2-06].

[71] J. A. Pater, M. K. Kim, E. D. Mynatt, and C. Fiesler,
“Characterizations of Online Harassment: Comparing Policies
Across Social Media Platforms,” in in Proceedings of the 19th
international conference on supporting group work, 2016,
pp. 369–374.

[72] S. Zannettou, J. Blackburn, E. De Cristofaro, M. Sirivianos,
and G. Stringhini, “Understanding Web Archiving Services
and their (Mis) Use on Social Media,” in in Proceedings of
the 12th International AAAI Conference on Web and Social
Media, 2018.

[73] K. Thomas, D. Akhawe, M. Bailey, et al., “Sok: Hate,
Harassment, and The Changing Landscape of Online Abuse,”
in Proceedings of the 42nd IEEE Symposium on Security
and Privacy (S&P), San Francisco, CA, May 2021.

[74] H. Badis, G. Doyen, and R. Khatoun, “Understanding
Botclouds From a System Perspective: A Principal
Component Analysis,” in Proceedings of the IEEE/IFIP
Network Operations and Management Symposium (NOMS),
IEEE, 2014.

[75] G. Lingam, R. R. Rout, D. V. L. N. Somayajulu, and
S. K. Das, “Social Botnet Community Detection: A Novel
Approach based on Behavioral Similarity in Twitter Network
using Deep Learning,” in Proceedings of the 15th ACM
Symposium on Information, Computer and Communications
Security (ASIACCS), Taipei, Taiwan, Oct. 2020.

[76] N. Pantic and M. I. Husain, “Covert Botnet Command and
Control Using Twitter,” in Proceedings of the 31st Annual
Computer Security Applications Conference (ACSAC), Los
Angeles, CA, Dec. 2015.

[77] H. Wang, Z. Xi, F. Li, and S. Chen, “Abusing Public
Third-Party Services for EDoS Attacks,” in Proceedings of the
10th USENIX Workshop on Offensive Technologies
(WOOT), Austin, TX, Aug. 2016.

[78] S. Alrwais, K. Yuan, E. Alowaisheq, Z. Li, and X. Wang,
“Understanding the dark side of domain parking,” in
Proceedings of the 23rd USENIX Security Symposium
(Security), San Diego, CA, Aug. 2014.

[79] G. Gomez, P. Moreno-Sanchez, and J. Caballero, “Watch your
back: Identifying cybercrime financial relationships in bitcoin
through back-and-forth exploration,” in Proceedings of the
29th ACM Conference on Computer and Communications
Security (CCS), Los Angeles, CA, Nov. 2022, pp. 1291–1305.

14

https://www.trendmicro.com/en_us/research/18/k/lazarus-continues-heists-mounts-attacks-on-financial-organizations-in-latin-america.html
https://www.trendmicro.com/en_us/research/18/k/lazarus-continues-heists-mounts-attacks-on-financial-organizations-in-latin-america.html
https://www.trendmicro.com/en_us/research/18/k/lazarus-continues-heists-mounts-attacks-on-financial-organizations-in-latin-america.html
https://www.trendmicro.com/en_us/research/18/k/lazarus-continues-heists-mounts-attacks-on-financial-organizations-in-latin-america.html
https://content.fireeye.com/apt-41/rpt-apt41
https://www.forcepoint.com/sites/default/files/resources/files/forcepoint-security-labs-monsoon-analysis-report.pdf
https://www.forcepoint.com/sites/default/files/resources/files/forcepoint-security-labs-monsoon-analysis-report.pdf
https://www.forcepoint.com/sites/default/files/resources/files/forcepoint-security-labs-monsoon-analysis-report.pdf
https://documents.trendmicro.com/assets/tech-brief-untangling-the-patchwork-cyberespionage-group.pdf
https://documents.trendmicro.com/assets/tech-brief-untangling-the-patchwork-cyberespionage-group.pdf
https://documents.trendmicro.com/assets/tech-brief-untangling-the-patchwork-cyberespionage-group.pdf
https://www.secureworks.com/research/bronze-butler-targets-japanese-businesses
https://www.secureworks.com/research/bronze-butler-targets-japanese-businesses
https://www.secureworks.com/research/bronze-butler-targets-japanese-businesses
https://www.malwarebytes.com/blog/news/2017/03/spora-ransomware
https://www.malwarebytes.com/blog/news/2017/03/spora-ransomware
https://documents.trendmicro.com/assets/pdf/Operation-ENDTRADE-TICK-s-Multi-Stage-Backdoors-for-Attacking-Industries-and-Stealing-Classified-Data.pdf
https://documents.trendmicro.com/assets/pdf/Operation-ENDTRADE-TICK-s-Multi-Stage-Backdoors-for-Attacking-Industries-and-Stealing-Classified-Data.pdf
https://documents.trendmicro.com/assets/pdf/Operation-ENDTRADE-TICK-s-Multi-Stage-Backdoors-for-Attacking-Industries-and-Stealing-Classified-Data.pdf
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://www.welivesecurity.com/wp-content/uploads/2020/06/ESET_InvisiMole.pdf
https://www.welivesecurity.com/wp-content/uploads/2020/06/ESET_InvisiMole.pdf
https://research.checkpoint.com/2019/ponys-cc-servers-hidden-inside-the-bitcoin-blockchain/
https://research.checkpoint.com/2019/ponys-cc-servers-hidden-inside-the-bitcoin-blockchain/
https://www.welivesecurity.com/2019/10/03/casbaneiro-trojan-dangerous-cooking/
https://www.welivesecurity.com/2019/10/03/casbaneiro-trojan-dangerous-cooking/
https://www.fireeye.com/blog/threat-research/2016/04/multigrain_pointo.html
https://www.fireeye.com/blog/threat-research/2016/04/multigrain_pointo.html
https://securelist.com/the-dropping-elephant-actor/75328/
https://securelist.com/the-dropping-elephant-actor/75328/
https://blog.talosintelligence.com/2019/04/gustuff-targets-australia.html
https://blog.talosintelligence.com/2019/04/gustuff-targets-australia.html
https://www.trendmicro.com/en_us/research/21/g/biopass-rat-new-malware-sniffs-victims-via-live-streaming.html
https://www.trendmicro.com/en_us/research/21/g/biopass-rat-new-malware-sniffs-victims-via-live-streaming.html
https://blog.trendmicro.com/trendlabs-security-intelligence/malware-campaign-targets-south-korean-banks-uses-pinterest-as-cc-channel/
https://blog.trendmicro.com/trendlabs-security-intelligence/malware-campaign-targets-south-korean-banks-uses-pinterest-as-cc-channel/
https://blog.trendmicro.com/trendlabs-security-intelligence/malware-campaign-targets-south-korean-banks-uses-pinterest-as-cc-channel/
https://blog.trendmicro.com/trendlabs-security-intelligence/malware-campaign-targets-south-korean-banks-uses-pinterest-as-cc-channel/
https://theory.stanford.edu/~aiken/moss/
https://theory.stanford.edu/~aiken/moss/
https://www.virustotal.com/
https://www.fortinet.com/blog/threat-research/malicious-use-of-pastebin
https://www.fortinet.com/blog/threat-research/malicious-use-of-pastebin
https://www.zdnet.com/article/how-malware-writers-laziness-is-helping-one-startup-predict-attacks-before-they-even-happen/
https://www.zdnet.com/article/how-malware-writers-laziness-is-helping-one-startup-predict-attacks-before-they-even-happen/
https://www.zdnet.com/article/how-malware-writers-laziness-is-helping-one-startup-predict-attacks-before-they-even-happen/
https://whois.whoisxmlapi.com/
https://threatpost.com/malware-cc-servers-found-in-184-countries/99870/
https://threatpost.com/malware-cc-servers-found-in-184-countries/99870/
https://threatpost.com/malware-cc-servers-found-in-184-countries/99870/
https://www.bitcoinabuse.com/

[80] C. Cadar and D. Engler, “Execution Generated Test Cases:
How to Make Systems Code Crash Itself,” in Proceedings of the
International SPIN Workshop on Model Checking of Software,
Springer, San Francisco, CA, USA, Aug. 2005, pp. 2–23.

[81] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,
“Unleashing Mayhem on Binary Code,” in Proceedings of the
33rd IEEE Symposium on Security and Privacy (S&P), San
Francisco, CA, May 2012, pp. 380–394.

[82] J. C. King, “Symbolic Execution and Program Testing,” 7,
vol. 19, ACM, 1976, pp. 385–394.

[83] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT — A Formal
System for Testing and Debugging Programs by Symbolic
Execution,” ACM, 1975.

[84] L. A. Clarke, “A System to Generate Test Data and
Symbolically Execute Programs,” IEEE Transactions on
Software Engineering, no. 3, pp. 215–222, 1976.

[85] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force:
Force-executing Binary Programs for Security Applications,”
in Proceedings of the 23rd USENIX Security Symposium
(Security), San Diego, CA, Aug. 2014, pp. 829–844.

[86] K. Kim, I. L. Kim, C. H. Kim, et al., “J-force: Forced
Execution on Javascript,” in Proceedings of the 26th
International World Wide Web Conference (WWW), Perth,
Australia, 2017, pp. 897–906.

[87] A. Naderi-Afooshteh, Y. Kwon, A. Nguyen-Tuong,
A. Razmjoo-Qalaei, M.-R. Zamiri-Gourabi, and
J. W. Davidson, “MalMax: Multi-Aspect Execution for
Automated Dynamic Web Server Malware Analysis,” in
Proceedings of the 26th ACM Conference on Computer and
Communications Security (CCS), London, UK, Nov. 2011,
pp. 1849–1866.

[88] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You Ever
Wanted to Know About Dynamic Taint Analysis and Forward
Symbolic Execution (But Might Have Been Afraid to Ask),”
in Proceedings of the 31th IEEE Symposium on Security and
Privacy (S&P), Oakland, CA, May 2010, pp. 317–331.

[89] M. G. Kang, S. McCamant, P. Poosankam, and D. Song,
“Dta++: Dynamic Taint Analysis With Targeted
Control-Flow Propagation,” in Proceedings of the 18th
Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2011.

[90] J. Newsome and D. X. Song, “Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software,” in Proceedings of the 12th
Annual Network and Distributed System Security Symposium
(NDSS), vol. 5, San Diego, CA, Feb. 2005, pp. 3–4.

[91] J. Clause, W. Li, and A. Orso, “Dytan: A Generic Dynamic
Taint Analysis Framework,” in Proceedings of the
International Symposium on Software Testing and Analysis
(ISSTA), London, UK, Jul. 2007.

[92] J. Ming, D. Xu, Y. Jiang, and D. Wu, “BinSim: Trace-based
Semantic Binary Diffing via System Call Sliced Segment
Equivalence Checking,” pp. 253–270.

[93] D. Xu, J. Ming, and D. Wu, “Cryptographic Function
Detection in Obfuscated Binaries via Bit-Precise Symbolic
Loop Mapping,” in Proceedings of the 38th IEEE Symposium
on Security and Privacy (S&P), San Jose, CA, May 2017.

[94] Y. David, N. Partush, and E. Yahav, “Statistical similarity of
binaries,” Acm Sigplan Notices, vol. 51, no. 6, pp. 266–280,
2016.

[95] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection,” in in
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014,
pp. 389–400.

[96] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and
H. B. K. Tan, “Bingo: Cross-architecture cross-os binary
search,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, 2016, pp. 678–689.

[97] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz,
“Cross-architecture bug search in binary executables,” in
Proceedings of the 36th IEEE Symposium on Security and
Privacy (S&P), San Jose, CA, May 2015, pp. 709–724.

[98] S. Wang and D. Wu, “In-memory fuzzing for binary code
similarity analysis,” in 2017 32nd IEEE/ACM International

Conference on Automated Software Engineering (ASE), IEEE,
2017, pp. 319–330.

[99] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket
execution: Dynamic similarity testing for program binaries and
components,” in Proceedings of the 23rd USENIX Security
Symposium (Security), San Diego, CA, Aug. 2014, pp. 303–317.

[100] Malpedia: Free and Open Malware Reverse Engineering
Resource offered by Fraunhofer FKIE,
https : / / malpedia . caad . fkie . fraunhofer . de, [Accessed:
2021-11-06].

[101] L. Maffia, D. Nisi, P. Kotzias, G. Lagorio, S. Aonzo, and D.
Balzarotti, “Longitudinal Study of the Prevalence of Malware
Evasive Techniques,” arXiv preprint arXiv:2112.11289, 2021.

[102] N. Galloro, M. Polino, M. Carminati, A. Continella, and S.
Zanero, “A Systematical and Longitudinal Study of Evasive
Behaviors in Windows Malware,” COSE22, vol. 113,

A ANTI-ANALYSIS APIS
Malware use anti-analysis or defensive evasion APIs to evade
detection. R2D2 hooks these APIs to enable continued
malware exploration. The complete list of defensive evasion
APIs considered in designing R2D2 is listed in Table 9.
These APIs are based on our manual malware analysis,
reports from industry experts [34], [100], and prior research
investigating victim system emulation and malware evasion
techniques [44], [101], [102].

Table 9: Defensive Evasion APIs.

Anti-Analysis and Defensive Evasion APIs

CheckRemoteDebuggerPresent CreateProcessInternal
CreateProcessWithLogon CreateProcessWithToken
EnumDeviceDrivers EnumDisplayMonitors
EnumServicesStatus FindClose
FindWindow GetCursorPos
GetDC GetDeviceCaps
GetDiskFreeSpacev GetEnvironmentStrings
GetFileAttributes GetFileSize
GetFileTime GetKeyboardLayout
GetKeyboardType GetLastInputInfo
GetLocaleInfo GetLocalTime
GetOEMCP GetServiceKeyName
GetSysColor GetSystemInfo
GetSystemMetrics GetSystemTimeAsFileTime
GetSystemTimes GetThreadLocale
GetTickCount GetTickCount64
GetUserDefaultUILanguage IsDebuggerPresent
IsDebuggerPresentPEB IsProcessorFeaturePresent
NtCreateFile NtGetContextThread
NtGetTickCount NtEnumerateKey
NtEnumerateValueKey NtOpenFile
NtOpenKey NtQueryAttributesFile
NtQueryPerformanceCounter NtQuerySystemTime
QueryPerformanceCounter QueryInterruptTime
NtQueryValueKey RegCloseKey
RegGetValue RegOpenKey
RegQueryValue RtlTimeToSecondsSince1970
SetTimer Sleep
SleepEx timeGetSystemTime
timeGetTime timeSetEvent

B DE-MANIPULATION ALGORITHM
SOURCE CODE SIMILARITY

We use Moss [61] to ensure each decoding algorithm
considered in R2D2 is markedly different. As shown
in Table 10, no differing algorithms overlap, as formalized in
Row 6, where |𝑅| is the length of the set containing all
de-manipulation algorithm implementations and 𝑚 and 𝑛

15

https://malpedia.caad.fkie.fraunhofer.de

Table 10: Baseline Comparison for De-Manipulation Algorithm C/C++ Source Code via Moss [61].

Base16 Base32 Base64 Base85 Char Sub. Str ⇆ Int Rotate Str Prs XOR AES DES DPAPI RC4

v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3 S→I S← v1 v2 v3 v1 v2 v1 v2 v3 v1 v2 v1 v2 v1 v2 v1 v2

v1 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 100 0 0 100 0 100 0 0 100 0 100 0 100 0 100 0
v2 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 100 0 0 100 0 100 0 0 100 0 100 0 100 0 100
v3 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 - - 0 0 100 - - 0 0 100 - - - - - - - -

∀𝑚, 𝑛 ∈ 0, |𝑅| ∧𝑚 ≠ 𝑛 : 𝑀𝑜𝑠𝑠𝑅𝑛, 𝑅𝑚 = ∅

are indices of different algorithms in the set. The only
matches occurred when 1 algorithm was compared with
itself, which is expected. This verifies that each
de-manipulation algorithm selected for R2D2 is a different
implementation.

C DE-MANINPULATION COMPARISON
GRAPHS

Table 11 displays graphs for each set of de-manipulation
algorithm comparisons. For example, in Column 1, Row 1,
the graph consists of comparisons for all 3 versions of Base
16 totaling 9 comparisons (i.e., Base16v1 vs Base16v2, etc.).
The graph displays a 2-hour run time (X-axis) where each
line corresponds to a de-manipulation similarity (Y-axis)
comparison. From §4.2, we picked 2 hours because we
observed the match rate for each comparison plateau for at
least 30 minutes, giving us confidence that the value at the
plateau is the most accurate view of equivalence. The black
vertical line marks the latest plateauing comparison and
shows that all comparisons plateau for more than 30
minutes. In this case, the earliest plateau occurred at 20
minutes and the latest plateau at 85 minutes. We select the
best matching algorithm from each class for R2D2 to use for
malware de-manipulation algorithm identification.

D WALLET IDS
R2D2 found 75 bitcoin wallet IDs in 3,098 malware, as shown
in Table 13 and Table 12. These wallet IDs were reported as
malicious toward remediation. However, since R2D2 reveals
how the blockchain transactions are decoded to C&C server
IP addresses, authorities can submit transactions to the
offending accounts to sinkhole the botnet [3].

E SERVICE PROVIDER COLLABORATION
Figure 8 and Figure 9 shows Pastebin’s and WordPress’
response. Within 48 hours, the offending accounts were
removed.

Figure 8: A Pastebin Account Removed.

Figure 9: Response From WordPress.

16

Table 11: Baseline Comparison for Decoding Algorithm Similarity via Symbolic Expressions.

Base16 Base32 Base64 Base85 Chr Sub. Str↔Int Rotate Str Prs XOR AES DES DPAPI RC4

B
as

e1
6

B
as

e3
2

B
as

e6
4

B
as

e8
5

C
ha

r
Su

b
St

r,
In

t
R

ot
at

e
St

r
Pr

s
X

O
R

A
ES

//

D
ES

D
PA

PI
R

C
4

17

Table 12: Bitcoin Wallet IDs.

Blockchain App Wallet ID

coinmarketcap.com 1BkeGqpo8M5KNVYXW3obmQt1R58zXAqLBQ
1N94rYBBCZSnLoK56omRkAPRFrpr5t8C1y

blockstream.info 1qre9cdrqdagy0p2sww2dvp7td86kws09v
1qj2h87z0v8u7ddp823apvjzpu5asssfpy

blockchain.info

1Lud76Q98VRHCUiyK7XUs7AgFofrqXeP78
15GqSWnxEFZezUCcGjhBMknA1PB7aYNXC1
18sHYU49vUFk6TN6G2Pj6DSCUzkbLvwJtc
1DsyxmgvkBTnLBnCXWyymNaDNhgmzib4mp
1BkeGqpo8M5KNVYXW3obmQt1R58zXAqLBQ
13LHbsf1CWgat1ZLYYoMsjeeybvCD7ZUxh
3ab5ab9511cf52565314425424d0b0b978
1qtkmks24vyuemjm6w3j3qagyn2pu3d93y
1NL67bQ8dPbfxLKcXBpuE3n8H5AsExBvwt
38D2P6apsGhghkGK4mSAMB9yr5enXW6iUy
32Lsw4r5YGLS5qhZsgp1b2kk1xTbf7T4Wf
16nA62oxxsDgc2R2NoW6WtFrZkB3XLvVpb
323c2a4e57b5ba21687fe7ce5918ceaf4a
1Dhf71bPe3wQ4At9YSaEVXGyhwzFiKNdBo
1q97764a4dnuzfd5dxxyhqggyn7de9z978
1qsce320qf73s9v593p0jxfs46q7nh0zus
1NxsR82Efaqbnt3c9QQUoYJpejwFtDrnNe
1Eyx9PKb1bs9X7n4UK7JHnzSxedyUvHimE
1FK6Y4BcHV5jQ6nPJTL83EyrhLzWGTvkfv
1PwAEK6Zp371Vegwp38XzP4nULikzUrCRa
1K4GnSGtoH7qx4SvpoJ3v3Nv2yZg6v5sDY
1EYnNjRKWqFBRLe53Ui1HVwxDwK1gqsKGp
3Gf7NRXDKtAzeTYG9fwHLg9snpSi2AZpyj
3QKjFKdqtJi34UnFwdA8VsaV2NkRgmaUnf
3NXdpbSZqe3sniegAgzEpo7YisDqVQiL6y
1KVwMFZw4QUuoqdeWtehDeB7qLhx3ncGVV
1KQheJU4ZwXvMdoLevVhDVVHU1zwWUMcDp
1qwqr922tvn69gsdhn7fcayspwt202fzer
33u5t5A8qvQFdwVMANDFS91LGMw68fiaMc
1GAEMH9wiX8LqJm7v8oKLdgM5Zr3msE6E3

blockcypher.com

1HTDy9SkfhwaNCXFA8wFCvN53f3iGpm8kb
1016d7ceff188e9fe32e68e9761bd811f3
17gd1msp5FnMcEMF1MitTNSsYs7w7AQyCt
1BkeGqpo8M5KNVYXW3obmQt1R58zXAqLBQ
3916a96ba7bfc95ed103aff4286360e820
1ML94w1SCudkiFHaEwYqTmKGTkywxVBuZg
1a4778fd2ba2b8ae98c573defa3b0e86d8
1GcnsLs7C31uuroNmUHwwbB5xQeNvm63Ee
193896af781481f195a4c55cbf053b7e95
1CMRScsrxPe2N4HwPpNKcHUhfCJXUm2Cx6
3bcec9103e14bd8969f2d1f2e14bd72399
3e3c52d8aeed29d2e5f2835061f01fa758
18ecb27aff6d1c6a889f810c50eb72e565
1d8c213480d883fc2c4a001ecfb106f241
1CpTCVckjajNKDd7PsApV3cAkunVd4Mcmt
198009d287c818d2a9aa72f7f828c19c84
19hi8BJ7HxKK45aLVdMbzE6oTSW5mGYC82
1N9ALZUgqYzFQGDXvMY5j1c7PGMMGYqUde
133be6e6ccca5bb6b3e3aaa34cf14a374a
34d153ae12ebfe18cea39ddc07d514865b
14bbtRSruiXHtvofYgB24Wdpma1Bx6RSof
19ZN4JM9ZH2nLc3PZh85n3t1WVzjBKD39D
14a0b3c26dc368d1b69862eb28fd8648fd
1ALuqPer2DSD9YyU9nrZz6NR1dDwCQLnE7
1BYZgQnu3M86ra95Jywj5xiL2fE7Nbn64q
1Fbhv84haM4TiwcR71WCVZg87EWbFxFUZC
1Q5qfq1tC7ptd5bGWimbCkJT1hp8v9eNfu
33fde6e00a62995ddd4977b5cf7b8bc55c
1VocauiabutZLvzBau7V6QgCC7WQnmU1n2
1BjVeaZBMA9QEweeRfK6nftzDPbr7jMaDk
161fPjdCt5H9uYawPpPT4poc8RBcLFaE3R
1CeLgFDu917tgtunhJZ6BA2YdR559Boy9Y

bitaps.com
17gd1msp5FnMcEMF1MitTNSsYs7w7AQyCt
1CMRScsrxPe2N4HwPpNKcHUhfCJXUm2Cx6
1HTDy9SkfhwaNCXFA8wFCvN53f3iGpm8kb

Table 13: Bitcoin Wallet IDs.

Blockchain App Wallet ID

blockr.io

1cptcvckjajnkdd7psapv3cakunvd4mcmt
17gd1msp5FnMcEMF1MitTNSsYs7w7AQyCt
1HTDy9SkfhwaNCXFA8wFCvN53f3iGpm8kb
1a4778fd2ba2b8ae98c573defa3b0e86d8
1GcnsLs7C31uuroNmUHwwbB5xQeNvm63Ee
1CpTCVckjajNKDd7PsApV3cAkunVd4Mcmt
1d6037414ac2bbf101eadae4d4c4d57e98
1CMRScsrxPe2N4HwPpNKcHUhfCJXUm2Cx6
17bf8ba6d1bb9e5f03b0946d467fca7887
1b354ee81d0ea177be5355b8a430db1b22
3a0ed3db93838620fee7aed8c87f3ebacb
11486a040f0cf7511a53f7610958f2a109
35ef6c71fafa9e30ee56d312dd626999ac
1e77054da43c04f19b628a7ea5bfc6d1ca
1e52ba07c17cc49995c915209b23b23ad6

18

	Abstract
	1 Introduction
	2 Challenges and Opportunities
	3 R2D2's Analysis Pipeline
	3.1 DDR Logic Localization
	3.2 De-Manipulation IO Boundary Isolation
	3.3 De-Manipulation Recipe Verification

	4 Validating Our Techniques
	4.1 DDR Logic Localization
	4.2 De-Manipulation Recipe Identification
	4.3 De-Manipulation Recipe Identification

	5 Insights into DDR Malware
	5.1 DDR Malware Findings
	5.2 De-Manipulation Algorithms Identified
	5.3 Geolocalized Rendezvous Points
	5.4 Razy Reloaded: A Case Study
	5.5 Towards Remediation

	6 Related Work
	7 Conclusion
	A Anti-Analysis APIs
	B De-manipulation Algorithm Source Code Similarity
	C De-Maninpulation Comparison Graphs
	D Wallet IDs
	E Service Provider Collaboration

